APPENDIX C

TRAFFIC ANALYSIS AND METHODOLOGY REPORT

APPENDIX A

Traffic Analysis and Methodology Report 8-80104.00

KY 90 Corridor Study

Pulaski County, Kentucky September 9, 2022

Contents

Introduction	1
Project Study Area	1
Existing Conditions	1
Existing Traffic Operations	2
Traffic Data	2
Baseline Traffic Volumes (2022)	3
Traffic Operations	5
Intersection Traffic Operations	6
Segment Traffic Operations	6
Future Year Traffic Operations (2045)	7
Intersection Traffic Operations	7
Segment Traffic Operations	8
Conclusions	10

List of Figures

Figure 1: KY 90 Study Area Map	1
Figure 2: Hourly Traffic Volumes	3
Figure 3: 2022 Peak Hour Intersection Turning Movement Counts	4
Figure 4: 2045 Peak Hour Intersection Turning Movement Counts	9

List of Tables

2
5
5
6
7
8
8

Appendices

Appendix A: Synchro Output Files Appendix B: HCS7 Output Files

Introduction

The Kentucky Transportation Cabinet (KYTC) initiated a study to look at the KY 90 corridor in Pulaski County between MP 0.0 and 3.061 to identify and evaluate potential operational and safety solutions. The study identified and analyzed both short-term and long-term improvement strategies. The goal of this study was to evaluate the existing conditions and future conditions with regards to safety, traffic operations, and roadway geometrics. This appendix focuses on the traffic operations evaluation procedures and methodology used to accomplish this goal.

Project Study Area

The KY 36 study area is shown in **Figure 1**. It is located in Pulaski County and extends for approximately 3.1 miles from the Wayne County Line (MP 0.0) to the New Cumberland River Bridge (MP 3.061). KY 90 is a major east-west highway in south central Kentucky connecting the communities of Glasgow, Burkesville, Monticello, Somerset, and terminating near the city of Corbin. Just outside the study limits and beyond the Cumberland River a grade separated interchange with US 27 is present.

Figure 1: KY 90 Study Area Map

Existing Conditions

KY 90 is a two-lane roadway with 12-foot wide travel lanes in the study area from the Wayne County line to Gibson Lane where it starts transitioning to a 5 lane cross-section with two travel lanes in each direction and a Two-Way-Left-Turn (TWLT) lane in the middle. A small segment near the western edge of the study area (west of Forest Ridge Road) has passing lanes in each direction. At the KY 90 / Gibson Lane intersection, KY 90 has one travel lane in each direction and a TWLT. There are 10-foot paved shoulders along both directions of travel throughout the study area. KY 90 is classified as a rural minor arterial in the

section west of Jacksboro Road and an urban minor arterial highway to the east. It has a posted speed limit of 55 MPH.

Existing Traffic Operations

Traffic Data

Current and historical Average Annual Daily Traffic (AADT), K & D factors¹, and truck percentage information was obtained from KYTC along KY 90 at the following three count locations where they collect short-term hourly counts:

- Count Station 100558 Halls Lane to Jacksboro Road (MP 0.00 to 1.377)
- Count Station 100355 Jacksboro Road to KY 790 (MP 1.377 to 2.852)
- Count Station 100D04 KY 790 to New Cumberland River Bridge (MP 2.852 to 3.061)

Table 1 provides a summary of the counts which were obtained between the years of 2017 to 2019. The *KY 90 Traffic Forecast Report* contains the raw traffic count data.

Count Station	County	Route	Begin MP	End MP	Count Year	AADT	K Factor	D Factor	% Single Truck**	% Combo Truck**	% Total Trucks**
100558	Pulaski	KY 90	0.00	1.377	2019	10,408	9.9	58	6.1	3.8	9.8
100355	Pulaski	KY 90	1.377	2.852	2017	10,719	7.3	56	6.1	3.8	9.8
100D04	Pulaski	KY 90	2.852	3.061	2019	15,279	8.6	57	6.1	3.8	9.8

Table 1: KY 90 Study Area Historical Count Station Data

*SU = Single Unit Truck, Combo = multi-axle truck with trailer **Rounded to nearest 0.1%

Hourly counts within the study area were analyzed to determine the AM and PM Peak periods along this segment of KY 90. The graph of the hourly count data from these three stations is presented in **Figure 2**. As can be seen, the AM peak hour occurred between 7 and 8 am and the PM peak hour occurred between 4 and 5 pm. Based on this information, AM and PM peak hour turning movement counts were collected at the seven study intersections.

¹ The K factor is the percentage of the AADT in both directions during the peak hour (K = DHV/AADT). The D factor is the percentage of traffic in the peak direction during the peak hour.

Analysis was conducted to determine if any counts done in 2022 would be consistent with pre-pandemic traffic patterns. 2017, 2019 and 2020 counts were obtained for stations 100355 and 100D04. A comparison was made between the 2020 counts and the previous years to determine if significant changes in travel patterns and volumes occurred during the COVID-19 pandemic. The 2020 AADT volume at station 100355 was 9% higher than the 2017 volume and the 2020 AADT volume at station 100D04 was 40% lower than the 2019 volume. This difference showed that travel pattern changes during the COVID-19 pandemic had a significant impact on traffic in the study area. A 24-hour volume count (AADT of 15,751 vehicles per day) was conducted at count station 100D04 in 2022 as part of this project to validate this volume discrepancy. It indicated that volumes post 2020 had increased back to pre-pandemic values.

Baseline Traffic Volumes (2022)

To evaluate intersection level traffic operations and to confirm the design hour volumes from the segment counts, turning movement counts were conducted at the seven study intersections. The peak hour when these counts would be conducted was based on the peak hours observed in **Figure 2**. The counts were conducted in late March 2022 during the AM Peak period (7am to 9am) and PM Peak period (4pm to 6pm) at the intersections listed below and presented in **Figure 3** (rounded to the nearest 10vph).

- KY 90 / Forest Ridge Road
- KY 90 / Sycamore Drive
- KY 90 / Jacksboro Road
- KY 90 / Old Bronston School Road
- KY 90 / Tucker Road
- KY 90 / Gibson Lane
- KY 90 / KY 790

Figure 3: 2022 Peak Hour Intersection Turning Movement Counts

These intersection turning movement counts were used to develop the 2022 design hour volumes for the intersection and segment traffic operations analysis.

Traffic Operations

Operational analysis was conducted at nine segments and seven intersections in the study area along KY 90 to determine AM and PM Peak hour traffic operations. Analysis was conducted using HCS7 and Synchro software, which report measures of effectiveness derived from techniques documented in the Highway Capacity Manual (HCM), 6th Edition. The results of this analysis are a Level of Service (LOS) rating. LOS is a qualitative measure that is used to describe the operating conditions of a roadway segment or intersection based on factors such as speed, travel time, maneuverability, delay and safety. LOS are described by a letter designation ranging from "A" to "F", with LOS "A" representing essentially uninterrupted flow (the best operating condition), and LOS "F" representing a breakdown of traffic flow with excessive congestion and delay (the worst operating condition).

KY 90 is classified as a rural minor arterial for the section west of Jacksboro Road and an urban minor arterial highway to the east. The AASHTO Green Book guidelines suggest that rural arterials be designed to LOS C and urban arterials to LOS D. Since roughly half the corridor is classified as an urban minor arterial and there is anticipated future development growth along this entire corridor, the design team decided to use LOS D as the design value for the entire corridor.

Table 2 provides LOS criteria for the segment analysis.

	2-Lane Highway*	Multi-Lane Highway
L03	Density (vehicles/mi/ln)	Density (pc/mi/ln)
A	≤ 2.0	≤ 11
В	>2.0 - 4.0	>11-18
С	>4.0 - 8.0	>18-26
D	>8.0 - 12.0	>26-35
E	>12.0	>35-45
F	Demand exceeds capacity	>45

Table 2: Segment LOS Range

pc/mi/ln: passenger cars per mile per lane

LOS D or better is acceptable

LOS is F when volume/capacity ≥ 1.0

*Two-lane follower density thresholds for facilities with posted speed limit ≥ 50mph

At intersections, the LOS concept is a measure of average operating conditions during an hour. It is based on average delay per vehicle for a specified time period. Two-way, stop-controlled (TWSC) intersection LOS is defined in terms of the average vehicle delay of an individual movement(s). **Table 3** provides LOS criteria for unsignalized intersections.

Table 3: LOS Criteria for TWSC Intersections

LOS	Average Control Delay (sec/veh)	LOS Description
A	< 10	Little or no delay
В	> 10 and <15	Short traffic delays
С	> 15 and <25	Average traffic delays
D	> 25 and <35	Long traffic delays
E	> 35 and <50	Very long traffic delays
F	> 50	Severe congestion

Intersection Traffic Operations

All seven intersections in the study area are currently TWSC intersections on the minor street approaches. A network of the KY 90 corridor was created in Synchro and the TWSC HCM results were obtained. **Table 4** provides LOS and delay information for each intersection.

All movements along eastbound and westbound mainline KY 90 at the intersections currently operate at LOS A during peak hours. The minor street stop-controlled movements at all intersections operate at LOS D or better during both the AM and PM peak hours. Complete Synchro output data is available in **Appendix A** of this report.

Intersection			ļ	AM Pe	ak Hou	r		PM Peak Hour								
	EB LT		WB LT		NB Approach		SB Approach		EB LT		WB LT		NB Approach		SB Approach	
	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
Forest Ridge Rd.	-	-	8.5	Α	12.5	В	-	-	-	-	8.1	А	12.2	В	-	-
Sycamore Dr.	-	-	8.7	А	13.5	В	-	-	-	-	8.2	А	12.8	В	-	-
Jacksboro Rd.	0.0	А	8.7	Α	15.0	В	15.4	С	8.6	А	8.1	А	20.1	С	16.8	С
Old Bronston School Rd.	-	-	8.7	Α	13.7	В	-	-	-	-	0.0	А	10.9	В	-	-
Tucker Rd.	0.0	А	8.9	Α	12.9	В	26.0	D	9.1	А	8.4	А	17.3	С	28.9	D
Gibson Ln.	0.0	А	0.0	Α	0.0	Α	24.9	С	9.3	А	0.0	Α	23.3	С	28.5	D
KY 790	0.0	Α	9.5	Α	13.2	В	20.0	С	9.7	А	8.8	Α	12.7	В	26.9	D

EB=Eastbound, WB=Westbound, NB=Northbound, SB=Southbound Note: Delay in seconds

Segment Traffic Operations

KY 90 within the study area boundary was broken into nine segments for analysis. Each segment was analyzed using the two-lane or multi-lane highway analysis methods from the Highway Capacity Manual (HCM) 6th Edition as implemented by the HCS7 software. The AM and PM peak hours in each direction were analyzed to determine the LOS, Density, and volume-to-capacity ratios (v/c). 2019 HERE speed data within the study area was available from KYTC and was used to determine free flow speed values inputted into HCS7.

Table 5 presents the results of the segment analysis. Under existing traffic conditions (2022), both directions of travel on all nine KY 90 study segments operate at LOS D or better during both the AM and PM peak hours. The volume to capacity ratio along the entire study corridor is below 0.5 during the peak hours of travel. Complete HCS7 output files are available in **Appendix B** of this report.

			Å	AM Pea	ak Hou	r	PM Peak Hour							
Segment	No. of	E	Eastbound	d	V	Vestboun	d		Eastboun	d	Westbound			
	Lanco	LOS Density V/C		LOS	OS Density V/C		LOS	LOS Density		LOS	Density	V/C		
Beginning of Study to MP 0.15	4*	А	4.2	0.12	А	2.6	0.08	А	2.9	0.09	А	4.7	0.14	
MP 0.15 to Forest Ridge Rd.	2	С	4.3	0.29	А	2.0	0.18	В	2.5	0.20	С	5.0	0.32	
Forest Ridge Rd. to Sycamore Dr.	2	С	5.1	0.32	В	2.2	0.19	В	2.8	0.22	С	5.6	0.34	
Sycamore Dr. to Jacksboro Rd.	2	С	5.6	0.34	В	2.4	0.20	В	3.1	0.23	С	5.8	0.35	
Jacksboro Rd. to Old Bronston School Rd.	2	С	5.7	0.35	В	2.6	0.21	В	3.5	0.25	С	6.1	0.36	
Old Bronston School Rd. to Tucker Rd.	2	С	6.6	0.37	в	3.0	0.22	В	3.9	0.26	С	7.2	0.39	
Tucker Rd. to Gibson Ln.	2	С	7.4	0.40	В	3.5	0.24	С	4.4	0.28	D	8.1	0.42	
Gibson Ln. to 0.1 Mile West of KY 790	2	D	8.3	0.43	В	3.7	0.25	С	4.6	0.29	D	8.4	0.44	
0.1 Mile West of KY 790 to End of Study	5	A	7.4	0.21	А	4.2	0.12	А	4.6	0.13	А	7.4	0.21	

Table 5: 2022 Segment Level of Service

Note: Density in pc/mi/ln *4 lane undivided passing lanes

Future Year Traffic Operations (2045)

The growth rate for the KY 90 corridor within the study area that was determined through the traffic forecasting effort was 1.2% per year. This growth rate was derived by reviewing historical traffic growth in the study area, county population growth data, and output from the KY Statewide Traffic Model. The growth rate was applied to the 2022 base year volumes to develop future design year (2045) traffic volumes which are presented in **Figure 4**. Details for the volume forecasting work are presented in the *KY 90 Traffic Forecast Report*.

Intersection Traffic Operations

The analysis methods outlined in the section above were used to evaluate intersection traffic operations in the future design year of 2045. The results are summarized in **Table 6**.

The intersections of KY 90/Forest Ridge Road, KY 90/Sycamore Drive and KY 90/Old Bronston School Road are expected to operate at LOS C or better with 17.1 seconds of delay per vehicle or less during both AM and PM peak hours in 2045. The left turn movements along the minor street approaches at KY 90/Jacksboro Road, KY 90/Tucker Road, KY 90/Gibson Lane, and KY 90/KY 790 are expected to experience delay and operate at LOS E or F during the peak hours. Vehicles along southbound Gibson Lane are expected to experience lengthy delays during the PM peak hour of 157 seconds per vehicle. It is, however, not uncommon for left turn movements along the minor street approach at stop-controlled intersections to experience higher delay during peak hours. Although a signal warrant analysis was not conducted at these intersections, a preliminary examination indicated that they are not expected to meet any signal warrants by 2045.

					· /											
Intersection				AM Pe	ak Hou	r		PM Peak Hour								
	EB LT		WB LT		NB Approach		SB Approach		EB LT		WB LT		NB Approach		SB Approach	
	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
Forest Ridge Rd.	-	-	9.0	А	14.7	В	-	-	-	-	8.6	А	15.6	С	-	-
Sycamore Dr.	-	-	9.3	А	16.1	С	-	-	-	-	8.7	А	16.0	С	-	-
Jacksboro Rd.	0.0	А	9.4	Α	19.5	С	20.3	С	9.6	Α	8.6	Α	41.0	Е	26.8	D
Old Bronston School Rd.	-	-	9.4	А	17.1	С	-	-	-	-	8.9	А	12.6	В	-	-
Tucker Rd.	0.0	А	9.7	А	16.0	С	54.2	F	10.5	В	9.1	А	34.8	D	94.0	F
Gibson Ln.	0.0	А	0.0	А	0.0	А	68.0	F	10.9	В	0.0	А	57.2	F	157.6	F
KY 790	0.0	А	10.7	В	17.0	С	33.3	D	10.9	В	10.0	А	17.7	С	85.4	F

Table 6: 2045 Intersection LOS and Delay

EB=Eastbound, WB=Westbound, NB=Northbound, SB=Southbound, LT = Left Turn Note: Delay in seconds

Segment Traffic Operations

As can be seen in **Table 7**, all segments along the study section of KY 90 are expected to continue operating at LOS D or better in 2045 during both the AM and PM peak hours except for the small segment between Gibson Lane and KY 790 which is expected to operate at LOS E. The follower density for this section is expected to be approximately 12.3 vehicles/mile/lane which is only just slightly over the LOS D criteria of 12 vehicles/mile/lane. Due to the increase in volumes along the roadway, the v/c ratios are expected to increase but will still be well under the capacity of the roadway. The highest v/c ratio is expected to be 0.57 between Gibson Lane and KY 790 during the peak hours. All other segments along KY 90 are expected to have v/c ratios of under 0.5 during both peak hours. Thus, capacity along KY 90 in the study section is not anticipated to be an issue by 2045.

				AM Pe	eak Ho	our	PM Peak Hour						
Segment	No. of	Eastbound			1	Westbou	nd	E	Eastbour	ıd	Westbound		
	Lanco	LOS	Density	V/C	LOS	Density	V/C	LOS	Density	V/C	LOS	Density	V/C
Beginning of Study to MP 0.15	4*	А	5.5	0.16	А	3.4	0.10	А	4.0	0.12	А	6.1	0.18
MP 0.15 to Forest Ridge Rd.	2	С	6.5	0.38	В	3.0	0.23	В	3.9	0.27	С	7.4	0.41
Forest Ridge Rd. to Sycamore Dr.	2	С	7.5	0.42	В	3.5	0.25	С	4.4	0.29	D	8.3	0.45
Sycamore Dr. to Jacksboro Rd.	2	D	8.4	0.45	В	3.6	0.26	С	4.9	0.31	D	8.8	0.47
Jacksboro Rd. to Old Bronston School Rd.	2	D	8.6	0.45	В	3.9	0.27	С	5.2	0.33	D	9.1	0.47
Old Bronston School Rd. to Tucker Rd.	2	D	9.9	0.49	С	4.6	0.29	С	5.9	0.34	D	10.6	0.51
Tucker Rd. to Gibson Ln.	2	D	11.3	0.54	С	5.2	0.31	С	6.7	0.37	D	11.9	0.56
Gibson Ln. to 0.1 Mile West of KY 790	2	Е	12.2	0.57	С	5.6	0.33	С	6.8	0.38	Е	12.3	0.57
0.1 Mile West of KY 790 to End of Study	5	А	9.8	0.28	А	5.6	0.16	А	6.1	0.18	А	9.7	0.28

Table 7: 2045 Segment Level Of Service

Note: Density in pc/mi/ln *4 lane undivided passing lanes

Figure 4: 2045 Peak Hour Intersection Turning Movement Counts

Conclusions

Traffic operations along KY 90 from MP 0.00 to MP 3.061 were examined for both existing conditions (year 2022) and Future conditions (year 2045) as part to the KYTC study to investigate operational and safety conditions along this roadway. Operations along nine segments and at seven intersections were analyzed during both the AM and PM peak hours. Under current conditions, all segments and intersections along KY 90 operate at LOS D or better during both peak hours. By 2045, all segments along KY 90 are expected to continue operating at LOS D or better during both the AM and PM peak hours with anticipated v/c ratios along the entire corridor of 0.57 or less with the exception of the small segment between Gibson Lane and KY 790 which is expected to operate at LOS E. In the future year 2045, minor street approaches along several study intersections are expected to experience longer delays and are expected to operate at LOS E or F. It is however not uncommon for minor street movements at stop-controlled intersections to experience longer delays during peak hours. A preliminary investigation of the projected volumes indicates that these intersections are not expected to meet signal warrants by 2045.

Appendix A: Synchro Output Files KY 90 Corridor Study

0.7					
CDT					
FRI	ERK	WBL	WRI	NRL	NRK
- 1 2			- କୀ	۰¥	
420	10	10	260	5	30
420	10	10	260	5	30
0	0	0	0	0	0
Free	Free	Free	Free	Stop	Stop
-	None	-	None	-	None
-	-	-	-	0	-
,# 0	-	-	0	0	-
0	-	-	0	0	-
87	87	87	87	87	87
6	6	6	6	6	6
102	11	11	200	6	24
	0.7 EBT 420 420 0 Free - , # 0 0 87 6 482	0.7 EBT EBR 420 10 420 10 420 10 0 0 Free Free - None ,# 0 0 87 87 6 6 483 11	0.7 EBT EBR WBL 420 10 10 420 10 10 420 10 00 Free Free Free - None - ,# 0 0 87 87 87 6 6 6 483 11 11	0.7 EBT EBR WBL WBT ↑ ↑ 420 10 10 260 420 10 10 260 0 0 0 0 Free Free Free Free - None - None ,# 0 0 0 0 87 87 87 87 6 6 6 6	0.7 EBT EBR WBL WBT NBL 420 10 10 260 5 420 10 10 260 5 420 10 10 260 5 0 0 0 0 0 0 Free Free Free Free Stop - None - None - 0 0 ,# 0 0 0 0 - 0 0 87 87 87 87 87 87 6 6 6 6 6 6

Major/Minor	Major1	1	Major2		Minor1		
Conflicting Flow All	0	0	494	0	810	489	
Stage 1	-	-	-	-	489	-	
Stage 2	-	-	-	-	321	-	
Critical Hdwy	-	-	4.16	-	6.46	6.26	
Critical Hdwy Stg 1	-	-	-	-	5.46	-	
Critical Hdwy Stg 2	-	-	-	-	5.46	-	
Follow-up Hdwy	-	-	2.254	-	3.554	3.354	
Pot Cap-1 Maneuver	-	-	1049	-	344	571	
Stage 1	-	-	-	-	608	-	
Stage 2	-	-	-	-	726	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuver	· -	-	1049	-	340	571	
Mov Cap-2 Maneuver	· -	-	-	-	340	-	
Stage 1	-	-	-	-	608	-	
Stage 2	-	-	-	-	717	-	
Annroach	FR		WR		NR		
HCM Control Delay			03		12.5		
HCM LOS	0		0.0		12.J R		
					D		
Minor Lane/Major Mvr	mt N	BLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)		520	-	-	1049	-	
HCM Lane V/C Ratio	(0.077	-	-	0.011	-	
HCM Control Delay (s	5)	12.5	-	-	8.5	0	
HCM Lane LOS		В	-	-	А	А	

0

-

0.3

HCM 95th %tile Q(veh)

05/1	3/2	022
------	-----	-----

Intersection						
Int Delay, s/veh	0.6					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	et 👘			÷.	Y	
Traffic Vol, veh/h	460	5	10	260	5	20
Future Vol, veh/h	460	5	10	260	5	20
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	83	83	83	83	83	83
Heavy Vehicles, %	6	6	6	6	6	6
Mvmt Flow	554	6	12	313	6	24

Major/Minor	Major1	ľ	Major2		Minor1	
Conflicting Flow All	0	0	560	0	894	557
Stage 1	-	-	-	-	557	-
Stage 2	-	-	-	-	337	-
Critical Hdwy	-	-	4.16	-	6.46	6.26
Critical Hdwy Stg 1	-	-	-	-	5.46	-
Critical Hdwy Stg 2	-	-	-	-	5.46	-
Follow-up Hdwy	-	-	2.254	-	3.554	3.354
Pot Cap-1 Maneuver	-	-	991	-	307	522
Stage 1	-	-	-	-	566	-
Stage 2	-	-	-	-	714	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	991	-	302	522
Mov Cap-2 Maneuver	-	-	-	-	302	-
Stage 1	-	-	-	-	566	-
Stage 2	-	-	-	-	703	-
Annroach	FB		WB		NR	
HCM Control Delay s	0		03		13.5	
HCM LOS	U		0.0		10.0 R	
					U	
Minor Lane/Major Mvn	nt Ni	BLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		456	-	-	991	-
HCM Lane V/C Ratio	C	0.066	-	-	0.012	-
HCM Control Delay (s))	13.5	-	-	8.7	0
HCM Lane LOS		В	-	-	Α	Α

A 0

-

-

0.2

-

HCM 95th %tile Q(veh)

Intersection

Movement E	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	0	490	5	5	280	5	5	0	10	5	0	5
Future Vol, veh/h	0	490	5	5	280	5	5	0	10	5	0	5
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control F	ree	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	86	86	86	86	86	86	86	86	86	86	86	86
Heavy Vehicles, %	6	6	6	6	6	6	6	6	6	6	6	6
Mvmt Flow	0	570	6	6	326	6	6	0	12	6	0	6

Major/Minor	Major1		М	ajor2			Minor1			Minor2			
Conflicting Flow All	332	0	0	576	0	0	917	917	573	920	917	329	
Stage 1	-	-	-	-	-	-	573	573	-	341	341	-	
Stage 2	-	-	-	-	-	-	344	344	-	579	576	-	
Critical Hdwy	4.16	-	-	4.16	-	-	7.16	6.56	6.26	7.16	6.56	6.26	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.16	5.56	-	6.16	5.56	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.16	5.56	-	6.16	5.56	-	
Follow-up Hdwy	2.254	-	- 2	2.254	-	-	3.554	4.054	3.354	3.554	4.054	3.354	
Pot Cap-1 Maneuver	1205	-	-	978	-	-	249	268	511	247	268	703	
Stage 1	-	-	-	-	-	-	498	497	-	666	632	-	
Stage 2	-	-	-	-	-	-	663	630	-	494	496	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	1205	-	-	978	-	-	246	266	511	240	266	703	
Mov Cap-2 Maneuver	-	-	-	-	-	-	246	266	-	240	266	-	
Stage 1	-	-	-	-	-	-	498	497	-	666	627	-	
Stage 2	-	-	-	-	-	-	652	625	-	483	496	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0			0.2			15			15.4			
HCM LOS							С			С			

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1
Capacity (veh/h)	376	1205	-	-	978	-	-	358
HCM Lane V/C Ratio	0.046	-	-	-	0.006	-	-	0.032
HCM Control Delay (s)	15	0	-	-	8.7	0	-	15.4
HCM Lane LOS	С	А	-	-	А	А	-	С
HCM 95th %tile Q(veh)	0.1	0	-	-	0	-	-	0.1

Intersection

Int Delay, s/veh	0.7						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	et -			÷.	Y		
Traffic Vol, veh/h	490	5	10	300	5	30	
Future Vol, veh/h	490	5	10	300	5	30	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storage,	# 0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	85	85	85	85	85	85	
Heavy Vehicles, %	6	6	6	6	6	6	
M∨mt Flow	576	6	12	353	6	35	

Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	582	0	956	579
Stage 1	-	-	-	-	579	-
Stage 2	-	· -	-	-	377	-
Critical Hdwy	-	· -	4.16	-	6.46	6.26
Critical Hdwy Stg 1	-		-	-	5.46	-
Critical Hdwy Stg 2	-		-	-	5.46	-
Follow-up Hdwy	-		2.254	-	3.554	3.354
Pot Cap-1 Maneuver	-		973	-	282	507
Stage 1	-		-	-	553	-
Stage 2	-	· -	-	-	685	-
Platoon blocked, %	-	· -		-		
Mov Cap-1 Maneuver	-	· -	973	-	278	507
Mov Cap-2 Maneuver	-	· -	-	-	278	-
Stage 1	-	· -	-	-	553	-
Stage 2	-	· -	-	-	675	-
Annroach	FR		W/R		NR	
HCM Control Dolovia			0.2		12.7	
HCM LOS	U		0.5		13.7 D	
					D	
Minor Lane/Major Mvn	nt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		454	-	-	973	-
HCM Lane V/C Ratio		0.091	-	-	0.012	-

HCM Lane V/C Ratio	0.091	-	- ().012	-				
HCM Control Delay (s)	13.7	-	-	8.7	0				
HCM Lane LOS	В	-	-	А	А				
HCM 95th %tile Q(veh)	0.3	-	-	0	-				

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			\$	
Traffic Vol, veh/h	0	520	0	5	310	10	0	0	10	20	0	0
Future Vol, veh/h	0	520	0	5	310	10	0	0	10	20	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, #	4 -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	81	81	81	81	81	81	81	81	81	81	81	81
Heavy Vehicles, %	6	6	6	6	6	6	6	6	6	6	6	6
Mvmt Flow	0	642	0	6	383	12	0	0	12	25	0	0

Major/Minor	Major1		Ма	jor2			Minor1			Minor2			
Conflicting Flow All	395	0	0	642	0	0	1043	1049	642	1049	1043	389	
Stage 1	-	-	-	-	-	-	642	642	-	401	401	-	
Stage 2	-	-	-	-	-	-	401	407	-	648	642	-	
Critical Hdwy	4.16	-	- 4	1.16	-	-	7.16	6.56	6.26	7.16	6.56	6.26	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.16	5.56	-	6.16	5.56	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.16	5.56	-	6.16	5.56	-	
Follow-up Hdwy	2.254	-	- 2.	254	-	-	3.554	4.054	3.354	3.554	4.054	3.354	
Pot Cap-1 Maneuver	1142	-	-	924	-	-	204	224	467	202	226	651	
Stage 1	-	-	-	-	-	-	456	463	-	618	594	-	
Stage 2	-	-	-	-	-	-	618	590	-	452	463	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	1142	-	-	924	-	-	203	222	467	196	224	651	
Mov Cap-2 Maneuver	-	-	-	-	-	-	203	222	-	196	224	-	
Stage 1	-	-	-	-	-	-	456	463	-	618	589	-	
Stage 2	-	-	-	-	-	-	613	585	-	440	463	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0			0.1			12.9			26			
HCM LOS							В			D			

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1	
Capacity (veh/h)	467	1142	-	-	924	-	-	196	
HCM Lane V/C Ratio	0.026	-	-	-	0.007	-	-	0.126	
HCM Control Delay (s)	12.9	0	-	-	8.9	0	-	26	
HCM Lane LOS	В	А	-	-	А	А	-	D	
HCM 95th %tile Q(veh)	0.1	0	-	-	0	-	-	0.4	

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			÷			\$			\$	
Traffic Vol, veh/h	0	550	0	0	320	20	0	0	0	30	0	10
Future Vol, veh/h	0	550	0	0	320	20	0	0	0	30	0	10
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	81	81	81	81	81	81	81	81	81	81	81	81
Heavy Vehicles, %	6	6	6	6	6	6	6	6	6	6	6	6
Mvmt Flow	0	679	0	0	395	25	0	0	0	37	0	12

Major/Minor	Major1		Ν	/lajor2			Minor1			Minor2			
Conflicting Flow All	420	0	0	679	0	0	1093	1099	679	1087	1087	408	
Stage 1	-	-	-	-	-	-	679	679	-	408	408	-	
Stage 2	-	-	-	-	-	-	414	420	-	679	679	-	
Critical Hdwy	4.16	-	-	4.16	-	-	7.16	6.56	6.26	7.16	6.56	6.26	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.16	5.56	-	6.16	5.56	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.16	5.56	-	6.16	5.56	-	
Follow-up Hdwy	2.254	-	-	2.254	-	-	3.554	4.054	3.354	3.554	4.054	3.354	
Pot Cap-1 Maneuver	1118	-	-	895	-	-	188	209	445	190	212	635	
Stage 1	-	-	-	-	-	-	435	445	-	612	590	-	
Stage 2	-	-	-	-	-	-	608	583	-	435	445	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	1118	-	-	895	-	-	184	209	445	190	212	635	
Mov Cap-2 Maneuver	-	-	-	-	-	-	184	209	-	190	212	-	
Stage 1	-	-	-	-	-	-	435	445	-	612	590	-	
Stage 2	-	-	-	-	-	-	596	583	-	435	445	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0			0			0			24.9			
HCM LOS							А			С			
Minor Lane/Maior Myn	nt	NBLn1	EBI	EBT	FBR	WBI	WBT	WBR	SBL n1				
Capacity (yoh/h)			1110	(805			220				

Capacity (veh/h)	-	1118	-	-	895	-	-	230
HCM Lane V/C Ratio	-	-	-	-	-	-	-	0.215
HCM Control Delay (s)	0	0	-	-	0	-	-	24.9
HCM Lane LOS	А	А	-	-	А	-	-	С
HCM 95th %tile Q(veh)	-	0	-	-	0	-	-	0.8

Intersection

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL S	BT SBR
Lane Configurations 🎢 🛧 🎢 🌴	\$-
Traffic Vol, veh/h 0 580 20 40 340 5 5 0 90 10	0 5
Future Vol, veh/h 0 580 20 40 340 5 5 0 90 10	0 5
Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0 0	0 0
Sign Control Free Free Free Free Free Stop Stop Stop S	op Stop
RT Channelized None None None -	- None
Storage Length 150 425	
Veh in Median Storage, # - 0 0 0	0 -
Grade, % - 0 0 0	0 -
Peak Hour Factor 83 83 83 83 83 83 83 83 83 83 83	33 83
Heavy Vehicles, % 6 6 6 6 6 6 6 6 6 6	6 6
Mvmt Flow 0 699 24 48 410 6 6 0 108 12	0 6

Major/Minor	Major1		Ν	1ajor2		Ν	/linor1		Ν	/linor2			
Conflicting Flow All	416	0	0	723	0	0	1012	1223	362	859	1232	208	
Stage 1	-	-	-	-	-	-	711	711	-	509	509	-	
Stage 2	-	-	-	-	-	-	301	512	-	350	723	-	
Critical Hdwy	4.22	-	-	4.22	-	-	7.62	6.62	7.02	7.62	6.62	7.02	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.62	5.62	-	6.62	5.62	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.62	5.62	-	6.62	5.62	-	
Follow-up Hdwy	2.26	-	-	2.26	-	-	3.56	4.06	3.36	3.56	4.06	3.36	
Pot Cap-1 Maneuver	1111	-	-	849	-	-	188	172	623	244	170	786	
Stage 1	-	-	-	-	-	-	381	425	-	505	526	-	
Stage 2	-	-	-	-	-	-	672	525	-	629	419	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	1111	-	-	849	-	-	178	162	623	193	160	786	
Mov Cap-2 Maneuver	-	-	-	-	-	-	178	162	-	193	160	-	
Stage 1	-	-	-	-	-	-	381	425	-	505	496	-	
Stage 2	-	-	-	-	-	-	629	495	-	520	419	-	
Approach	FB			WB			NB			SB			
HCM Control Delay, s	0			1			13.2			20			
HCM LOS	•						B			C			

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	SBLn1	
Capacity (veh/h)	551	1111	-	-	849	-	-	258	
HCM Lane V/C Ratio	0.208	-	-	-	0.057	-	-	0.07	
HCM Control Delay (s)	13.2	0	-	-	9.5	-	-	20	
HCM Lane LOS	В	А	-	-	А	-	-	С	
HCM 95th %tile Q(veh)	0.8	0	-	-	0.2	-	-	0.2	

Intersection						
Int Delay, s/veh	0.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4Î			र्स	Y	
Traffic Vol, veh/h	320	0	30	500	5	20
Future Vol, veh/h	320	0	30	500	5	20
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles. %	6	6	6	6	6	6
Mymt Flow	344	0	32	538	5	22
			- •			

Major/Minor	Major1	I	Major2		Minor1	
Conflicting Flow All	0	0	344	0	946	344
Stage 1	-	-	-	-	344	-
Stage 2	-	-	-	-	602	-
Critical Hdwy	-	-	4.16	-	6.46	6.26
Critical Hdwy Stg 1	-	-	-	-	5.46	-
Critical Hdwy Stg 2	-	-	-	-	5.46	-
Follow-up Hdwy	-	-	2.254	-	3.554	3.354
Pot Cap-1 Maneuver	-	-	1193	-	285	690
Stage 1	-	-	-	-	709	-
Stage 2	-	-	-	-	539	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	· -	-	1193	-	274	690
Mov Cap-2 Maneuver	• -	-	-	-	274	-
Stage 1	-	-	-	-	709	-
Stage 2	-	-	-	-	519	-
Approach	ED		\\/D		ND	
Apploach HCM Control Doloy o					10.0	
HOM CONTROL Delay, S	5 0		0.5		IZ.Z	
HUM LUS					В	
Minor Lane/Major Mvr	mt N	IBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		529	-	-	1193	-
HCM Lane V/C Ratio		0.051	-	-	0.027	-
HCM Control Delay (s	5)	12.2	-	-	8.1	0
HCM Lane LOS		В	-	-	А	А

0.1

-

-

HCM 95th %tile Q(veh)

Intersection						
Int Delay, s/veh	0.6					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4			- द	Y	
Traffic Vol, veh/h	330	5	30	520	5	20
Future Vol, veh/h	330	5	30	520	5	20
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, %	6	6	6	6	6	6
Mvmt Flow	375	6	34	591	6	23

Major/Minor	Major1		Major2	ľ	Minor1	
Conflicting Flow All	0	0	381	0	1037	378
Stage 1	-	-	-	-	378	-
Stage 2	-	-	-	-	659	-
Critical Hdwy	-	-	4.16	-	6.46	6.26
Critical Hdwy Stg 1	-	-	-	-	5.46	-
Critical Hdwy Stg 2	-	-	-	-	5.46	-
Follow-up Hdwy	-	-	2.254	-	3.554	3.354
Pot Cap-1 Maneuver	-	-	1156	-	252	660
Stage 1	-	-	-	-	684	-
Stage 2	-	-	-	-	507	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1156	-	241	660
Mov Cap-2 Maneuver	-	-	-	-	241	-
Stage 1	-	-	-	-	684	-
Stage 2	-	-	-	-	485	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.4		12.8	
HCM LOS					В	
Minor Lane/Major Myr	nt N	IRI n1	FRT	EBR	W/RI	W/RT
Capacity (yeh/h)	nt r	100	LDI	LDI	1156	101
Capacity (ven/n)		490	-	-	1120	-

	400		1100			
HCM Lane V/C Ratio	0.058	-	- 0.029	-		
HCM Control Delay (s)	12.8	-	- 8.2	0		
HCM Lane LOS	В	-	- A	А		
HCM 95th %tile Q(veh)	0.2	-	- 0.1	-		

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	10	350	5	10	520	5	10	5	5	5	10	20
Future Vol, veh/h	10	350	5	10	520	5	10	5	5	5	10	20
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, #	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	6	6	6	6	6	6	6	6	6	6	6	6
M∨mt Flow	11	368	5	11	547	5	11	5	5	5	11	21

Major/Minor	Major1		Major2		М	linor1			Minor2			
Conflicting Flow All	552	0	0 373	0	0	981	967	371	970	967	550	
Stage 1	-	-		-	-	393	393	-	572	572	-	
Stage 2	-	-		-	-	588	574	-	398	395	-	
Critical Hdwy	4.16	-	- 4.16	-	-	7.16	6.56	6.26	7.16	6.56	6.26	
Critical Hdwy Stg 1	-	-		-	-	6.16	5.56	-	6.16	5.56	-	
Critical Hdwy Stg 2	-	-		-	-	6.16	5.56	-	6.16	5.56	-	
Follow-up Hdwy	2.254	-	- 2.254	-	- 3	3.554	4.054	3.354	3.554	4.054	3.354	
Pot Cap-1 Maneuver	998	-	- 1164	-	-	225	250	666	229	250	527	
Stage 1	-	-		-	-	624	599	-	498	498	-	
Stage 2	-	-		-	-	488	497	-	620	598	-	
Platoon blocked, %		-	-	-	-							
Mov Cap-1 Maneuver	998	-	- 1164	-	-	205	243	666	219	243	527	
Mov Cap-2 Maneuver	-	-		-	-	205	243	-	219	243	-	
Stage 1	-	-		-	-	615	591	-	491	491	-	
Stage 2	-	-		-	-	452	490	-	601	590	-	
Approach	EB		WB			NB			SB			

		=		* -	
HCM Control Delay, s	0.2	0.2	20.1	16.8	
HCM LOS			С	С	

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1
Capacity (veh/h)	260	998	-	-	1164	-	-	343
HCM Lane V/C Ratio	0.081	0.011	-	-	0.009	-	-	0.107
HCM Control Delay (s)	20.1	8.6	0	-	8.1	0	-	16.8
HCM Lane LOS	С	А	А	-	А	А	-	С
HCM 95th %tile Q(veh)	0.3	0	-	-	0	-	-	0.4

Intersection

Int Delay, s/veh

Int Delay, s/veh	0.3						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	l
Lane Configurations	4			- स ी	۰¥		
Traffic Vol, veh/h	400	5	20	580	0	10	
Future Vol, veh/h	400	5	20	580	0	10	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storage,	,# 0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	94	94	94	94	94	94	
Heavy Vehicles, %	6	6	6	6	6	6	
Mvmt Flow	426	5	21	617	0	11	

Major/Minor	Major1	ľ	Major2		Minor1	
Conflicting Flow All	0	0	431	0	1088	429
Stage 1	-	-	-	-	429	-
Stage 2	-	-	-	-	659	-
Critical Hdwy	-	-	4.16	-	6.46	6.26
Critical Hdwy Stg 1	-	-	-	-	5.46	-
Critical Hdwy Stg 2	-	-	-	-	5.46	-
Follow-up Hdwy	-	-	2.254	-	3.554	3.354
Pot Cap-1 Maneuver	-	-	1107	-	235	618
Stage 1	-	-	-	-	648	-
Stage 2	-	-	-	-	507	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	· -	-	1107	-	228	618
Mov Cap-2 Maneuver	• -	-	-	-	228	-
Stage 1	-	-	-	-	648	-
Stage 2	-	-	-	-	492	-
Approach	EB		WB		NB	
HCM Control Delay, s	s 0		0.3		10.9	
HCM LOS					В	
Minor Lane/Major Mvr	mt I	VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		618	-	-	1107	-
HCM Lane V/C Ratio		0.017	-	-	0.019	-
HCM Control Delay (s	6)	10.9	-	-	8.3	0

А

0.1

-

-

А

-

HCM Lane LOS

HCM 95th %tile Q(veh)

В

0.1

-

-

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			\$	
Traffic Vol, veh/h	5	400	5	20	610	20	5	0	10	20	0	5
Future Vol, veh/h	5	400	5	20	610	20	5	0	10	20	0	5
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	91	91	91	91	91	91	91	91	91	91	91	91
Heavy Vehicles, %	6	6	6	6	6	6	6	6	6	6	6	6
M∨mt Flow	5	440	5	22	670	22	5	0	11	22	0	5

Major/Minor	Major1		N	lajor2			Minor1			Minor2			
Conflicting Flow All	692	0	0	445	0	0	1181	1189	443	1183	1180	681	
Stage 1	-	-	-	-	-	-	453	453	-	725	725	-	
Stage 2	-	-	-	-	-	-	728	736	-	458	455	-	
Critical Hdwy	4.16	-	-	4.16	-	-	7.16	6.56	6.26	7.16	6.56	6.26	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.16	5.56	-	6.16	5.56	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.16	5.56	-	6.16	5.56	-	
Follow-up Hdwy	2.254	-	- 1	2.254	-	-	3.554	4.054	3.354	3.554	4.054	3.354	
Pot Cap-1 Maneuver	885	-	-	1094	-	-	164	185	606	163	187	444	
Stage 1	-	-	-	-	-	-	579	563	-	410	424	-	
Stage 2	-	-	-	-	-	-	409	419	-	575	562	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	885	-	-	1094	-	-	157	177	606	155	179	444	
Mov Cap-2 Maneuver	-	-	-	-	-	-	157	177	-	155	179	-	
Stage 1	-	-	-	-	-	-	574	558	-	407	410	-	
Stage 2	-	-	-	-	-	-	391	405	-	560	558	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0.1			0.3			17.3			28.9			
HCM LOS							С			D			

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1
Capacity (veh/h)	310	885	-	-	1094	-	-	178
HCM Lane V/C Ratio	0.053	0.006	-	-	0.02	-	-	0.154
HCM Control Delay (s)	17.3	9.1	0	-	8.4	0	-	28.9
HCM Lane LOS	С	Α	Α	-	А	А	-	D
HCM 95th %tile Q(veh)	0.2	0	-	-	0.1	-	-	0.5

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		÷			¢			¢			÷	
Traffic Vol, veh/h	10	420	5	0	640	30	5	5	5	20	5	10
Future Vol, veh/h	10	420	5	0	640	30	5	5	5	20	5	10
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	6	6	6	6	6	6	6	6	6	6	6	6
Mvmt Flow	11	457	5	0	696	33	5	5	5	22	5	11

Major/Minor	Major1		Major2		Minor1			Minor2			
Conflicting Flow All	729	0	0 462	0	0 1203	1211	460	1200	1197	713	
Stage 1	-	-		-	- 482	482	-	713	713	-	
Stage 2	-	-		-	- 721	729	-	487	484	-	
Critical Hdwy	4.16	-	- 4.16	-	- 7.16	6.56	6.26	7.16	6.56	6.26	
Critical Hdwy Stg 1	-	-		-	- 6.16	5.56	-	6.16	5.56	-	
Critical Hdwy Stg 2	-	-		-	- 6.16	5.56	-	6.16	5.56	-	
Follow-up Hdwy	2.254	-	- 2.254	-	- 3.554	4.054	3.354	3.554	4.054	3.354	
Pot Cap-1 Maneuver	857	-	- 1078	-	- 158	179	593	159	183	425	
Stage 1	-	-		-	- 558	547	-	417	429	-	
Stage 2	-	-		-	- 412	422	-	555	545	-	
Platoon blocked, %		-	-	-	-						
Mov Cap-1 Maneuver	857	-	- 1078	-	- 149	176	593	152	180	425	
Mov Cap-2 Maneuver	-	-		-	- 149	176	-	152	180	-	
Stage 1	-	-		-	- 549	538	-	410	429	-	
Stage 2	-	-		-	- 396	422	-	535	536	-	
Approach	EB		WB		NB			SB			
HCM Control Delay, s	0.2		0		23.3			28.5			
HCM LOS					С			D			

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR \$	SBLn1
Capacity (veh/h)	213	857	-	-	1078	-	-	191
HCM Lane V/C Ratio	0.077	0.013	-	-	-	-	-	0.199
HCM Control Delay (s)	23.3	9.3	0	-	0	-	-	28.5
HCM Lane LOS	С	А	А	-	А	-	-	D
HCM 95th %tile Q(veh)	0.2	0	-	-	0	-	-	0.7

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	- † 1-		ľ	∱ î,			¢			\$	
Traffic Vol, veh/h	5	440	5	90	680	5	5	0	40	5	0	5
Future Vol, veh/h	5	440	5	90	680	5	5	0	40	5	0	5
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	150	-	-	425	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	83	83	83	95	95	95	95	95	95
Heavy Vehicles, %	6	6	6	6	6	6	6	6	6	6	6	6
M∨mt Flow	5	463	5	108	819	6	5	0	42	5	0	5

Major/Minor	Major1		Ма	ajor2		Ν	/linor1		ľ	/linor2			
Conflicting Flow All	825	0	0	468	0	0	1102	1517	234	1280	1516	413	
Stage 1	-	-	-	-	-	-	476	476	-	1038	1038	-	
Stage 2	-	-	-	-	-	-	626	1041	-	242	478	-	
Critical Hdwy	4.22	-	-	4.22	-	-	7.62	6.62	7.02	7.62	6.62	7.02	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.62	5.62	-	6.62	5.62	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.62	5.62	-	6.62	5.62	-	
Follow-up Hdwy	2.26	-	-	2.26	-	-	3.56	4.06	3.36	3.56	4.06	3.36	
Pot Cap-1 Maneuver	776	-	- 1	1062	-	-	161	114	756	119	114	577	
Stage 1	-	-	-	-	-	-	528	545	-	240	298	-	
Stage 2	-	-	-	-	-	-	429	297	-	729	544	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	776	-	- 1	1062	-	-	146	102	756	103	102	577	
Mov Cap-2 Maneuver	-	-	-	-	-	-	146	102	-	103	102	-	
Stage 1	-	-	-	-	-	-	525	542	-	239	268	-	
Stage 2	-	-	-	-	-	-	382	267	-	684	541	-	
Approach	EB			WB			NB			SB			

HCM Control Delay, s	0.1	1	12.7	26.9	
HCM LOS			В	D	

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	SBLn1	
Capacity (veh/h)	516	776	-	-	1062	-	-	175	
HCM Lane V/C Ratio	0.092	0.007	-	-	0.102	-	-	0.06	
HCM Control Delay (s)	12.7	9.7	-	-	8.8	-	-	26.9	
HCM Lane LOS	В	А	-	-	А	-	-	D	
HCM 95th %tile Q(veh)	0.3	0	-	-	0.3	-	-	0.2	

Intersection						
Int Delay, s/veh	0.9					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	Þ			4	Y	
Traffic Vol, veh/h	550	10	20	340	5	40
Future Vol, veh/h	550	10	20	340	5	40
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	87	87	87	87	87	87
Heavy Vehicles, %	6	6	6	6	6	6
Mvmt Flow	632	11	23	391	6	46

Major/Minor	Major1		Major2	l	Minor1		
Conflicting Flow All	0	0	643	0	1075	638	
Stage 1	-	-	-	-	638	-	
Stage 2	-	-	-	-	437	-	
Critical Hdwy	-	-	4.16	-	6.46	6.26	
Critical Hdwy Stg 1	-	-	-	-	5.46	-	
Critical Hdwy Stg 2	-	-	-	-	5.46	-	
Follow-up Hdwy	-	-	2.254	-	3.554	3.354	
Pot Cap-1 Maneuver	-	-	923	-	239	469	
Stage 1	-	-	-	-	519	-	
Stage 2	-	-	-	-	643	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuver	-	-	923	-	231	469	
Mov Cap-2 Maneuver	-	-	-	-	231	-	
Stage 1	-	-	-	-	519	-	
Stage 2	-	-	-	-	622	-	
Approach	EB		WB		NB		
HCM Control Delay, s	0		0.5		14.7		
HCM LOS					В		
Minor Lane/Major Mvr	nt	NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)		421	-	-	923	-	
HCM Lane V/C Ratio		0.123	-	-	0.025	-	
HCM Control Delay (s)	14.7	-	-	9	0	
HCM Lane LOS	,	В	-	-	А	А	
HCM 95th %tile Q(veh	ı)	0.4	-	-	0.1	-	

Intersection		
Int Delay, s/veh	0.7	

Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1.			÷.	Y	
Traffic Vol, veh/h	600	5	10	340	5	30
Future Vol, veh/h	600	5	10	340	5	30
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	83	83	83	83	83	83
Heavy Vehicles, %	6	6	6	6	6	6
Mvmt Flow	723	6	12	410	6	36

Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	C	0	729	0	1160	726
Stage 1	-		-	-	726	-
Stage 2	-		-	-	434	-
Critical Hdwy	-	· -	4.16	-	6.46	6.26
Critical Hdwy Stg 1	-	· -	-	-	5.46	-
Critical Hdwy Stg 2	-	· -	-	-	5.46	-
Follow-up Hdwy	-		2.254	-	3.554	3.354
Pot Cap-1 Maneuver	-		857	-	212	418
Stage 1	-		-	-	472	-
Stage 2	-		-	-	645	-
Platoon blocked, %	-			-		
Mov Cap-1 Maneuver		· -	857	-	208	418
Mov Cap-2 Maneuver		· -	-	-	208	-
Stage 1	-		-	-	472	-
Stage 2	-	· -	-	-	633	-
Approach	EB		WB		NB	
HCM Control Delay, s	, C		0.3		16.1	
HCM LOS					С	
Minor Long/Major Mur	mt	NDI p1	EDT	EDD		
	III	NDLIII	EDI	EDR	VVDL	VDI
Capacity (ven/n)		365	-	-	857	-

	000		007			
HCM Lane V/C Ratio	0.116	-	- 0.014	-		
HCM Control Delay (s)	16.1	-	- 9.3	0		
HCM Lane LOS	С	-	- A	А		
HCM 95th %tile Q(veh)	0.4	-	- 0	-		

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			\$			4	
Traffic Vol, veh/h	0	650	5	5	360	0	5	0	10	5	0	5
Future Vol, veh/h	0	650	5	5	360	0	5	0	10	5	0	5
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	86	86	86	86	86	86	86	86	86	86	86	86
Heavy Vehicles, %	6	6	6	6	6	6	6	6	6	6	6	6
Mvmt Flow	0	756	6	6	419	0	6	0	12	6	0	6

Major/Minor	Major1		Major2		Minor1		I	Minor2			
Conflicting Flow All	419	0	0 762	0	0 1193	1190	759	1196	1193	419	
Stage 1	-	-		-	- 759	759	-	431	431	-	
Stage 2	-	-		-	- 434	431	-	765	762	-	
Critical Hdwy	4.16	-	- 4.16	-	- 7.16	6.56	6.26	7.16	6.56	6.26	
Critical Hdwy Stg 1	-	-		-	- 6.16	5.56	-	6.16	5.56	-	
Critical Hdwy Stg 2	-	-		-	- 6.16	5.56	-	6.16	5.56	-	
Follow-up Hdwy	2.254	-	- 2.254	-	- 3.554	4.054	3.354	3.554	4.054	3.354	
Pot Cap-1 Maneuver	1119	-	- 833	-	- 161	184	400	160	184	626	
Stage 1	-	-		-	- 393	409	-	595	576	-	
Stage 2	-	-		-	- 593	576	-	390	408	-	
Platoon blocked, %		-	-	-	-						
Mov Cap-1 Maneuver	1119	-	- 833	-	- 158	182	400	154	182	626	
Mov Cap-2 Maneuver	-	-		-	- 158	182	-	154	182	-	
Stage 1	-	-		-	- 393	409	-	595	571	-	
Stage 2	-	-		-	- 582	571	-	379	408	-	
Approach	EB		WB		NB			SB			
HCM Control Delay, s	0		0.1		19.5			20.3			

HCM LOS						С		С		
Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR SBLn1			
Capacity (veh/h)	265	1119	-	-	833	-	- 247			

0.066	-	-	- (0.007	-	-	0.047	
19.5	0	-	-	9.4	0	-	20.3	
С	А	-	-	А	А	-	С	
0.2	0	-	-	0	-	-	0.1	
	0.066 19.5 C 0.2	0.066 - 19.5 0 C A 0.2 0	0.066 19.5 0 - C A - 0.2 0 -	0.066 (19.5 0 C A 0.2 0	0.066 - - - 0.007 19.5 0 - - 9.4 C A - - A 0.2 0 - - 0	0.066 - - - 0.007 - 19.5 0 - - 9.4 0 C A - - A A 0.2 0 - - 0 -	0.066 - - 0.007 - - 19.5 0 - - 9.4 0 - C A - - A A - 0.2 0 - - 0 - -	0.066 - - 0.007 - - 0.047 19.5 0 - - 9.4 0 - 20.3 C A - - A A - C 0.2 0 - - 0 - - 0.1

Intersection

Int Delay, s/veh	0.6								
Movement	EBT	EBR	WBL	WBT	NBL	NBR			
Lane Configurations	Þ			÷.	Y				
Traffic Vol, veh/h	650	5	10	390	5	30			
Future Vol, veh/h	650	5	10	390	5	30			
Conflicting Peds, #/hr	0	0	0	0	0	0			
Sign Control	Free	Free	Free	Free	Stop	Stop			
RT Channelized	-	None	-	None	-	None			
Storage Length	-	-	-	-	0	-			
Veh in Median Storage	,# 0	-	-	0	0	-			
Grade, %	0	-	-	0	0	-			
Peak Hour Factor	85	85	85	85	85	85			
Heavy Vehicles, %	6	6	6	6	6	6			
Mvmt Flow	765	6	12	459	6	35			

Major/Minor	Major1	Major2	١	Minor1		_		
Conflicting Flow All	0	0 771	0	1251	768			
Stage 1	-		-	768	-			
Stage 2	-		-	483	-			
Critical Hdwy	-	- 4.16	-	6.46	6.26			
Critical Hdwy Stg 1	-		-	5.46	-			
Critical Hdwy Stg 2	-		-	5.46	-			
Follow-up Hdwy	-	- 2.254	-	3.554	3.354			
Pot Cap-1 Maneuver	-	- 826	-	187	395			
Stage 1	-		-	451	-			
Stage 2	-		-	612	-			
Platoon blocked, %	-	-	-					
Mov Cap-1 Maneuver	r -	- 826	-	183	395			
Mov Cap-2 Maneuver	r -		-	183	-			
Stage 1	-		-	451	-			
Stage 2	-		-	600	-			
Approach	EB	WB		NB				
HCM Control Delay, s	s 0	0.2		17.1				
HCM LOS				С				
Minor Lane/Major Mv	mt NB	Ln1 EBT	EBR	WBL	WBT			
Capacity (veh/h)		339 -	-	826	-			
HCM Lane V/C Ratio	0.	121 -	-	0.014	-			

	0.121	-	- (J.014	-
HCM Control Delay (s)	17.1	-	-	9.4	0
HCM Lane LOS	С	-	-	А	А
HCM 95th %tile Q(veh)	0.4	-	-	0	-

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			4			4			4	
Traffic Vol, veh/h	0	690	0	5	410	10	0	0	20	30	0	0
Future Vol, veh/h	0	690	0	5	410	10	0	0	20	30	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	81	81	81	81	81	81	81	81	81	81	81	81
Heavy Vehicles, %	6	6	6	6	6	6	6	6	6	6	6	6
Mvmt Flow	0	852	0	6	506	12	0	0	25	37	0	0

Major/Minor	Major1		Ма	ajor2		I	Vinor1		l	Minor2			
Conflicting Flow All	518	0	0	852	0	0	1376	1382	852	1389	1376	512	
Stage 1	-	-	-	-	-	-	852	852	-	524	524	-	
Stage 2	-	-	-	-	-	-	524	530	-	865	852	-	
Critical Hdwy	4.16	-	-	4.16	-	-	7.16	6.56	6.26	7.16	6.56	6.26	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.16	5.56	-	6.16	5.56	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.16	5.56	-	6.16	5.56	-	
Follow-up Hdwy	2.254	-	- 2	.254	-	-	3.554	4.054	3.354	3.554	4.054	3.354	
Pot Cap-1 Maneuver	1028	-	-	770	-	-	120	141	353	118	142	554	
Stage 1	-	-	-	-	-	-	349	370	-	529	523	-	
Stage 2	-	-	-	-	-	-	529	520	-	343	370	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	1028	-	-	770	-	-	119	139	353	109	140	554	
Mov Cap-2 Maneuver	-	-	-	-	-	-	119	139	-	109	140	-	
Stage 1	-	-	-	-	-	-	349	370	-	529	517	-	
Stage 2	-	-	-	-	-	-	523	514	-	319	370	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0			0.1			16			54.2			
HCM LOS							С			F			

					14/51	14/57		
Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR SE	3Ln1
Capacity (veh/h)	353	1028	-	-	770	-	-	109
HCM Lane V/C Ratio	0.07	-	-	-	0.008	-	-	0.34
HCM Control Delay (s)	16	0	-	-	9.7	0	-	54.2
HCM Lane LOS	С	А	-	-	А	А	-	F

-

0

-

1.3

-

0.2

0

-

HCM 95th %tile Q(veh)

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			\$	
Traffic Vol, veh/h	0	730	0	0	420	20	0	0	0	50	0	10
Future Vol, veh/h	0	730	0	0	420	20	0	0	0	50	0	10
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	81	81	81	81	81	81	81	81	81	81	81	81
Heavy Vehicles, %	6	6	6	6	6	6	6	6	6	6	6	6
Mvmt Flow	0	901	0	0	519	25	0	0	0	62	0	12

Major1		Ma	ajor2		l	Minor1			Minor2			
544	0	0	901	0	0	1439	1445	901	1433	1433	532	
-	-	-	-	-	-	901	901	-	532	532	-	
-	-	-	-	-	-	538	544	-	901	901	-	
4.16	-	-	4.16	-	-	7.16	6.56	6.26	7.16	6.56	6.26	
-	-	-	-	-	-	6.16	5.56	-	6.16	5.56	-	
-	-	-	-	-	-	6.16	5.56	-	6.16	5.56	-	
2.254	-	- 2	2.254	-	-	3.554	4.054	3.354	3.554	4.054	3.354	
1005	-	-	738	-	-	108	129	331	109	131	540	
-	-	-	-	-	-	327	352	-	524	519	-	
-	-	-	-	-	-	520	513	-	327	352	-	
	-	-		-	-							
1005	-	-	738	-	-	106	129	331	109	131	540	
-	-	-	-	-	-	106	129	-	109	131	-	
-	-	-	-	-	-	327	352	-	524	519	-	
-	-	-	-	-	-	508	513	-	327	352	-	
EB			WB			NB			SB			
0			0			0			68			
						А			F			
	Major1 544 - 4.16 - 2.254 1005 - - 1005 - - - 0 5 8 8 0	Major1 544 0 4.16 - 2.254 - 1005 - 1005 - 1005 - 5.254 - 1005 - 	Major1 M 544 0 0 - - - 4.16 - - - - - 2.254 - - 1005 - - - - - 1005 - - - - - 1005 - - - - - 0 - -	Major1 Major2 544 0 0 901 - - - - 4.16 - 4.16 - - - - 4.16 - 4.16 - - - - 2.254 - 2.254 1005 - 738 - - - 1005 - 738 - - - 1005 - 738 - - - 1005 - 738 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	Major1 Major2 544 0 0 901 0 - - - - - 4.16 - 4.16 - - - 4.16 - - - - - 2.254 - 2.254 - 1005 - 738 - - - - - 1005 - 738 - - - - - 1005 - 738 - - - - - - - - - - - - - - - - - - - - - - - - 1005 - 738 - - - - - - - - - - - -	Major1 Major2 I 544 0 0 901 0 0 - - - - - - - 4.16 - - 4.16 -	Major1 Major2 Minor1 544 0 0 901 0 0 1439 - - - - 901 - 901 - - - - 901 - 901 - - - - 901 - 901 - - - - - 901 - 901 - - - - - 538 - 538 4.16 - - 4.16 - - 7.16 - - - - - 6.16 - - 7.16 2.254 - - 2.254 - 3.554 1008 - 108 - - - 738 - 106 - 327 - - - - 327 - - 508 EB WB <td< td=""><td>Major1 Major2 Minor1 544 0 0 901 0 0 1439 1445 - - - - 901 901 - - - - 901 901 - - - - 901 901 - - - - 901 901 - - - - 901 901 - - - - 538 544 4.16 - - 7.16 6.56 - - - - 6.16 5.56 2.254 - 2.254 - 3.554 4.054 1005 - 738 - 108 129 - - - 520 513 - - - 106 129 - - - - 508 513 0<!--</td--><td>Major1 Major2 Minor1 544 0 0 901 0 0 1439 1445 901 - - - - 901 901 - - - - - 901 901 - - - - - 538 544 - 4.16 - - 7.16 6.56 6.26 - - - - 6.16 5.56 - - - - - 6.16 5.56 - 2.254 - 2.254 - 3.554 4.054 3.354 1005 - 738 - 108 129 331 - - - - 520 513 - 1005 - 738 - 106 129 331 - - - - 327 352 -</td><td>Major1 Major2 Minor1 Minor2 544 0 0 901 0 0 1439 1445 901 1433 - - - - 901 901 - 532 - - - - 901 901 - 532 - - - - 538 544 - 901 4.16 - - 7.16 6.56 6.26 7.16 - - - - 6.16 5.56 - 6.16 2.254 - 2.254 - 3.554 4.054 3.354 3.554 1005 - - 738 - 108 129 331 109 - - - - 520 513 - 327 - - - - 327 352 - 524 - - - <</td><td>Major1 Major2 Minor1 Minor2 544 0 0 901 0 0 1439 1445 901 1433 1433 - - - - 901 901 - 532 532 - - - - 538 544 - 901 901 4.16 - - 538 544 - 901 901 4.16 - - 7.16 6.56 6.26 7.16 6.56 - - - - 6.16 5.56 - 6.16 5.56 2.254 - 2.254 - 3.554 4.054 3.354 3.554 4.054 1005 - 738 - 108 129 331 109 131 - - - 520 513 - 327 352 - - 738 - 106</td><td>Major1 Major2 Minor1 Minor2 544 0 0 901 0 1439 1445 901 1433 1433 532 - - - - 901 901 - 532 532 - - - - - 538 544 - 901 901 - 4.16 - - 7.16 6.56 6.26 7.16 6.56 6.26 - - - 6.16 5.56 - 6.16 5.56 - 2.254 - 2.254 - 3.554 4.054 3.354 3.554 4.054 3.354 1005 - 7.38 - 108 129 331 109 131 540 - - - - 327 352 - 524 519 - - - - - 327 352 -</td></td></td<>	Major1 Major2 Minor1 544 0 0 901 0 0 1439 1445 - - - - 901 901 - - - - 901 901 - - - - 901 901 - - - - 901 901 - - - - 901 901 - - - - 538 544 4.16 - - 7.16 6.56 - - - - 6.16 5.56 2.254 - 2.254 - 3.554 4.054 1005 - 738 - 108 129 - - - 520 513 - - - 106 129 - - - - 508 513 0 </td <td>Major1 Major2 Minor1 544 0 0 901 0 0 1439 1445 901 - - - - 901 901 - - - - - 901 901 - - - - - 538 544 - 4.16 - - 7.16 6.56 6.26 - - - - 6.16 5.56 - - - - - 6.16 5.56 - 2.254 - 2.254 - 3.554 4.054 3.354 1005 - 738 - 108 129 331 - - - - 520 513 - 1005 - 738 - 106 129 331 - - - - 327 352 -</td> <td>Major1 Major2 Minor1 Minor2 544 0 0 901 0 0 1439 1445 901 1433 - - - - 901 901 - 532 - - - - 901 901 - 532 - - - - 538 544 - 901 4.16 - - 7.16 6.56 6.26 7.16 - - - - 6.16 5.56 - 6.16 2.254 - 2.254 - 3.554 4.054 3.354 3.554 1005 - - 738 - 108 129 331 109 - - - - 520 513 - 327 - - - - 327 352 - 524 - - - <</td> <td>Major1 Major2 Minor1 Minor2 544 0 0 901 0 0 1439 1445 901 1433 1433 - - - - 901 901 - 532 532 - - - - 538 544 - 901 901 4.16 - - 538 544 - 901 901 4.16 - - 7.16 6.56 6.26 7.16 6.56 - - - - 6.16 5.56 - 6.16 5.56 2.254 - 2.254 - 3.554 4.054 3.354 3.554 4.054 1005 - 738 - 108 129 331 109 131 - - - 520 513 - 327 352 - - 738 - 106</td> <td>Major1 Major2 Minor1 Minor2 544 0 0 901 0 1439 1445 901 1433 1433 532 - - - - 901 901 - 532 532 - - - - - 538 544 - 901 901 - 4.16 - - 7.16 6.56 6.26 7.16 6.56 6.26 - - - 6.16 5.56 - 6.16 5.56 - 2.254 - 2.254 - 3.554 4.054 3.354 3.554 4.054 3.354 1005 - 7.38 - 108 129 331 109 131 540 - - - - 327 352 - 524 519 - - - - - 327 352 -</td>	Major1 Major2 Minor1 544 0 0 901 0 0 1439 1445 901 - - - - 901 901 - - - - - 901 901 - - - - - 538 544 - 4.16 - - 7.16 6.56 6.26 - - - - 6.16 5.56 - - - - - 6.16 5.56 - 2.254 - 2.254 - 3.554 4.054 3.354 1005 - 738 - 108 129 331 - - - - 520 513 - 1005 - 738 - 106 129 331 - - - - 327 352 -	Major1 Major2 Minor1 Minor2 544 0 0 901 0 0 1439 1445 901 1433 - - - - 901 901 - 532 - - - - 901 901 - 532 - - - - 538 544 - 901 4.16 - - 7.16 6.56 6.26 7.16 - - - - 6.16 5.56 - 6.16 2.254 - 2.254 - 3.554 4.054 3.354 3.554 1005 - - 738 - 108 129 331 109 - - - - 520 513 - 327 - - - - 327 352 - 524 - - - <	Major1 Major2 Minor1 Minor2 544 0 0 901 0 0 1439 1445 901 1433 1433 - - - - 901 901 - 532 532 - - - - 538 544 - 901 901 4.16 - - 538 544 - 901 901 4.16 - - 7.16 6.56 6.26 7.16 6.56 - - - - 6.16 5.56 - 6.16 5.56 2.254 - 2.254 - 3.554 4.054 3.354 3.554 4.054 1005 - 738 - 108 129 331 109 131 - - - 520 513 - 327 352 - - 738 - 106	Major1 Major2 Minor1 Minor2 544 0 0 901 0 1439 1445 901 1433 1433 532 - - - - 901 901 - 532 532 - - - - - 538 544 - 901 901 - 4.16 - - 7.16 6.56 6.26 7.16 6.56 6.26 - - - 6.16 5.56 - 6.16 5.56 - 2.254 - 2.254 - 3.554 4.054 3.354 3.554 4.054 3.354 1005 - 7.38 - 108 129 331 109 131 540 - - - - 327 352 - 524 519 - - - - - 327 352 -

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1	
Capacity (veh/h)	-	1005	-	-	738	-	-	126	
HCM Lane V/C Ratio	-	-	-	-	-	-	-	0.588	
HCM Control Delay (s)	0	0	-	-	0	-	-	68	
HCM Lane LOS	А	А	-	-	А	-	-	F	
HCM 95th %tile Q(veh)	-	0	-	-	0	-	-	2.9	

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	2	1		5	† 1-			\$			\$	
Traffic Vol, veh/h	0	770	20	50	450	10	5	0	120	10	0	5
Future Vol, veh/h	0	770	20	50	450	10	5	0	120	10	0	5
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	150	-	-	425	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	83	83	83	83	83	83	83	83	83	83	83	83
Heavy Vehicles, %	6	6	6	6	6	6	6	6	6	6	6	6
Mvmt Flow	0	928	24	60	542	12	6	0	145	12	0	6

Major/Minor	Major1		Ma	jor2		Ν	/linor1		I	Minor2			
Conflicting Flow All	554	0	0	952	0	0	1331	1614	476	1132	1620	277	
Stage 1	-	-	-	-	-	-	940	940	-	668	668	-	
Stage 2	-	-	-	-	-	-	391	674	-	464	952	-	
Critical Hdwy	4.22	-	- 4	1.22	-	-	7.62	6.62	7.02	7.62	6.62	7.02	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.62	5.62	-	6.62	5.62	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.62	5.62	-	6.62	5.62	-	
Follow-up Hdwy	2.26	-	- 2	2.26	-	-	3.56	4.06	3.36	3.56	4.06	3.36	
Pot Cap-1 Maneuver	985	-	-	693	-	-	109	99	525	153	98	708	
Stage 1	-	-	-	-	-	-	276	332	-	405	445	-	
Stage 2	-	-	-	-	-	-	594	442	-	537	327	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	985	-	-	693	-	-	101	90	525	104	89	708	
Mov Cap-2 Maneuver	-	-	-	-	-	-	101	90	-	104	89	-	
Stage 1	-	-	-	-	-	-	276	332	-	405	406	-	
Stage 2	-	-	-	-	-	-	538	404	-	389	327	-	
Approach	EB			WB			NB			SB			
HCM Control Delay	0			1			17			33.3			

HCM LOS						С		D	
Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR SBLn1		
Capacity (veh/h)	450	985	-	-	693	-	- 145		
HCM Lane V/C Ratio	0.335	-	-	-	0.087	-	- 0.125		

							··· — •
HCM Control Delay (s)	17	0	-	- 10.7	-	-	33.3
HCM Lane LOS	С	А	-	- B	-	-	D
HCM 95th %tile Q(veh)	1.5	0	-	- 0.3	-	-	0.4
Intersection							
------------------------	--------	------	------	------	------	------	
Int Delay, s/veh	0.6						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	Þ			4	Y		
Traffic Vol, veh/h	430	0	40	650	5	20	
Future Vol, veh/h	430	0	40	650	5	20	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storage	e, # 0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	87	87	87	87	87	87	
Heavy Vehicles, %	6	6	6	6	6	6	
Mvmt Flow	494	0	46	747	6	23	

Major/Minor	Major1	I	Major2		Minor1		
Conflicting Flow All	0	0	494	0	1333	494	
Stage 1	-	-	-	-	494	-	
Stage 2	-	-	-	-	839	-	
Critical Hdwy	-	-	4.16	-	6.46	6.26	
Critical Hdwy Stg 1	-	-	-	-	5.46	-	
Critical Hdwy Stg 2	-	-	-	-	5.46	-	
Follow-up Hdwy	-	-	2.254	-	3.554	3.354	
Pot Cap-1 Maneuver	-	-	1049	-	167	567	
Stage 1	-	-	-	-	605	-	
Stage 2	-	-	-	-	417	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuver	-	-	1049	-	154	567	
Mov Cap-2 Maneuver	-	-	-	-	154	-	
Stage 1	-	-	-	-	605	-	
Stage 2	-	-	-	-	386	-	
Approach	EB		WB		NB		
HCM Control Delay, s	0		0.5		15.6		
HCM LOS					С		
Minor Lane/Maior Mvr	nt	NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)		369	_	-	1049	-	
HCM Lane V/C Ratio		0.078	-	-	0.044	-	
HCM Control Delay (s)	15.6	-	-	8.6	0	

А

0.1

-

-

-

-

А

-

С

0.3

HCM Lane LOS

HCM 95th %tile Q(veh)

Intersection					
Int Delay, s/veh	0.8				

Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	ţ,			ŧ	Y		
Traffic Vol, veh/h	440	5	40	690	5	30	
Future Vol, veh/h	440	5	40	690	5	30	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storage	,# 0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	83	83	83	83	83	83	
Heavy Vehicles, %	6	6	6	6	6	6	
Mvmt Flow	530	6	48	831	6	36	
Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow	0 83 6 530	- 83 6 6	83 6 48	0 83 6 831	0 83 6 6	83 6 36	

Major/Minor	Major1	l	Major2	I	Minor1		
Conflicting Flow All	0	0	536	0	1460	533	
Stage 1	-	-	-	-	533	-	
Stage 2	-	-	-	-	927	-	
Critical Hdwy	-	-	4.16	-	6.46	6.26	
Critical Hdwy Stg 1	-	-	-	-	5.46	-	
Critical Hdwy Stg 2	-	-	-	-	5.46	-	
Follow-up Hdwy	-	-	2.254	-	3.554	3.354	
Pot Cap-1 Maneuver	-	-	1012	-	139	539	
Stage 1	-	-	-	-	580	-	
Stage 2	-	-	-	-	379	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuver	r -	-	1012	-	127	539	
Mov Cap-2 Maneuver	r -	-	-	-	127	-	
Stage 1	-	-	-	-	580	-	
Stage 2	-	-	-	-	346	-	
Approach	EB		WB		NB		
HCM Control Delay, s	s 0		0.5		16		
HCM LOS					С		
Minor Lane/Major Mv	mt N	IBLn1	EBT	EBR	WBL	WBT	

,				
Capacity (veh/h)	368	-	- 1012	-
HCM Lane V/C Ratio	0.115	-	- 0.048	-
HCM Control Delay (s)	16	-	- 8.7	0
HCM Lane LOS	С	-	- A	Α
HCM 95th %tile Q(veh)	0.4	-	- 0.1	-

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	20	460	10	10	690	0	10	5	5	5	10	30
Future Vol, veh/h	20	460	10	10	690	0	10	5	5	5	10	30
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	86	86	86	86	86	86	86	86	86	86	86	86
Heavy Vehicles, %	6	6	6	6	6	6	6	6	6	6	6	6
Mvmt Flow	23	535	12	12	802	0	12	6	6	6	12	35

Major/Minor	Major1		Major2		Minor1			Minor2			
Conflicting Flow All	802	0	0 547	0	0 1437	1413	541	1419	1419	802	
Stage 1	-	-		-	- 587	587	-	826	826	-	
Stage 2	-	-		-	- 850	826	-	593	593	-	
Critical Hdwy	4.16	-	- 4.16	-	- 7.16	6.56	6.26	7.16	6.56	6.26	
Critical Hdwy Stg 1	-	-		-	- 6.16	5.56	-	6.16	5.56	-	
Critical Hdwy Stg 2	-	-		-	- 6.16	5.56	-	6.16	5.56	-	
Follow-up Hdwy	2.254	-	- 2.254	-	- 3.554	4.054	3.354	3.554	4.054	3.354	
Pot Cap-1 Maneuver	804	-	- 1003	-	- 109	135	533	112	134	378	
Stage 1	-	-		-	- 489	490	-	360	381	-	
Stage 2	-	-		-	- 350	381	-	485	487	-	
Platoon blocked, %		-	-	-	-						
Mov Cap-1 Maneuver	804	-	- 1003	-	- 88	127	533	102	126	378	
Mov Cap-2 Maneuver	-	-		-	- 88	127	-	102	126	-	
Stage 1	-	-		-	- 469	470	-	345	373	-	
Stage 2	-	-		-	- 301	373	-	454	467	-	
Annroach	FB		WR		NR			SB			
HCM Control Delay			0.1		/1			26.8			
	0.4		0.1		41			20.0			
					E			U			

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1
Capacity (veh/h)	123	804	-	-	1003	-	-	217
HCM Lane V/C Ratio	0.189	0.029	-	-	0.012	-	-	0.241
HCM Control Delay (s)	41	9.6	0	-	8.6	0	-	26.8
HCM Lane LOS	E	А	А	-	А	А	-	D
HCM 95th %tile Q(veh)	0.7	0.1	-	-	0	-	-	0.9

Intersection

Int Delay, s/veh	0.2						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	1.			÷.	Y		
Traffic Vol, veh/h	520	5	20	760	0	10	
Future Vol, veh/h	520	5	20	760	0	10	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storage,	# 0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	85	85	85	85	85	85	
Heavy Vehicles, %	6	6	6	6	6	6	
Mvmt Flow	612	6	24	894	0	12	

Major/Minor	Major1		Major2	1	Minor1	
Conflicting Flow All	C	0	618	0	1557	615
Stage 1			-	-	615	-
Stage 2			-	-	942	-
Critical Hdwy			4.16	-	6.46	6.26
Critical Hdwy Stg 1			-	-	5.46	-
Critical Hdwy Stg 2			-	-	5.46	-
Follow-up Hdwy			2.254	-	3.554	3.354
Pot Cap-1 Maneuver			943	-	121	484
Stage 1			-	-	532	-
Stage 2			-	-	373	-
Platoon blocked, %				-		
Mov Cap-1 Maneuver			943	-	115	484
Mov Cap-2 Maneuver			-	-	115	-
Stage 1			-	-	532	-
Stage 2			-	-	354	-
Approach	EB	}	WB		NB	
HCM Control Delay, s	; C)	0.2		12.6	
HCM LOS					В	
Minor Lono/Major My	mt	NDI n1	EDT	EDD	\//DI	
	m	ADLIII	EDI	EDR	042	VDI
Capacity (ven/n)		484	-	-	943	-

HCM Lane V/C Ratio	0.024	-	- 0.	025	-
HCM Control Delay (s)	12.6	-	-	8.9	0
HCM Lane LOS	В	-	-	А	А
HCM 95th %tile Q(veh)	0.1	-	-	0.1	-

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	5	530	5	30	800	30	5	0	10	20	0	5
Future Vol, veh/h	5	530	5	30	800	30	5	0	10	20	0	5
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	81	81	81	81	81	81	81	81	81	81	81	81
Heavy Vehicles, %	6	6	6	6	6	6	6	6	6	6	6	6
Mvmt Flow	6	654	6	37	988	37	6	0	12	25	0	6

Major/Minor	Major1		М	ajor2		I	Minor1			Minor2			
Conflicting Flow All	1025	0	0	660	0	0	1753	1768	657	1756	1753	1007	
Stage 1	-	-	-	-	-	-	669	669	-	1081	1081	-	
Stage 2	-	-	-	-	-	-	1084	1099	-	675	672	-	
Critical Hdwy	4.16	-	-	4.16	-	-	7.16	6.56	6.26	7.16	6.56	6.26	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.16	5.56	-	6.16	5.56	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.16	5.56	-	6.16	5.56	-	
Follow-up Hdwy	2.254	-	- 2	2.254	-	-	3.554	4.054	3.354	3.554	4.054	3.354	
Pot Cap-1 Maneuver	662	-	-	909	-	-	65	82	458	65	83	287	
Stage 1	-	-	-	-	-	-	441	450	-	259	289	-	
Stage 2	-	-	-	-	-	-	258	284	-	437	448	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	662	-	-	909	-	-	58	73	458	58	74	287	
Mov Cap-2 Maneuver	-	-	-	-	-	-	58	73	-	58	74	-	
Stage 1	-	-	-	-	-	-	435	444	-	255	262	-	
Stage 2	-	-	-	-	-	-	228	257	-	419	442	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0.1			0.3			34.8			94			
HCMLOS							D			F			

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1
Capacity (veh/h)	139	662	-	-	909	-	-	69
HCM Lane V/C Ratio	0.133	0.009	-	-	0.041	-	-	0.447
HCM Control Delay (s)	34.8	10.5	0	-	9.1	0	-	94
HCM Lane LOS	D	В	Α	-	A	Α	-	F
HCM 95th %tile Q(veh)	0.4	0	-	-	0.1	-	-	1.8

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			4	
Traffic Vol, veh/h	10	560	5	0	840	50	5	5	5	30	5	10
Future Vol, veh/h	10	560	5	0	840	50	5	5	5	30	5	10
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control I	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, #	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	81	81	81	81	81	81	81	81	81	81	81	81
Heavy Vehicles, %	6	6	6	6	6	6	6	6	6	6	6	6
Mvmt Flow	12	691	6	0	1037	62	6	6	6	37	6	12

Major/Minor	Major1		Major2		Min	nor1		I	Minor2			
Conflicting Flow All	1099	0	0 697	0	0 1	795	1817	694	1792	1789	1068	
Stage 1	-	-		-	-	718	718	-	1068	1068	-	
Stage 2	-	-		-	- 1	077	1099	-	724	721	-	
Critical Hdwy	4.16	-	- 4.16	-	- 7	7.16	6.56	6.26	7.16	6.56	6.26	
Critical Hdwy Stg 1	-	-		-	- 6	6.16	5.56	-	6.16	5.56	-	
Critical Hdwy Stg 2	-	-		-	- 6	6.16	5.56	-	6.16	5.56	-	
Follow-up Hdwy	2.254	-	- 2.254	-	- 3.	554 4	4.054	3.354	3.554	4.054	3.354	
Pot Cap-1 Maneuver	620	-	- 881	-	-	61	76	436	61	79	265	
Stage 1	-	-		-		414	427	-	264	293	-	
Stage 2	-	-		-	- :	261	284	-	411	426	-	
Platoon blocked, %		-	-	-	-							
Mov Cap-1 Maneuver	620	-	- 881	-	-	53	74	436	55	76	265	
Mov Cap-2 Maneuver	-	-		-	-	53	74	-	55	76	-	
Stage 1	-	-		-		401	413	-	256	293	-	
Stage 2	-	-		-	-	244	284	-	386	412	-	
Approach	EB		WB			NB			SB			
HCM Control Delay, s	0.2		0		5	57.2			157.6			

HCM LOS

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1
Capacity (veh/h)	87	620	-	-	881	-	-	69
HCM Lane V/C Ratio	0.213	0.02	-	-	-	-	-	0.805
HCM Control Delay (s)	57.2	10.9	0	-	0	-	-	157.6
HCM Lane LOS	F	В	А	-	А	-	-	F
HCM 95th %tile Q(veh)	0.7	0.1	-	-	0	-	-	3.8

F

F

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	≜ †₽		5	† 1,			\$			\$	
Traffic Vol, veh/h	5	580	10	120	890	5	5	0	50	10	0	5
Future Vol, veh/h	5	580	10	120	890	5	5	0	50	10	0	5
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	150	-	-	425	-	-	-	-	-	-	-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	83	83	83	83	83	83	83	83	83	83	83	83
Heavy Vehicles, %	6	6	6	6	6	6	6	6	6	6	6	6
Mvmt Flow	6	699	12	145	1072	6	6	0	60	12	0	6

Major/Minor	Major1		N	lajor2		N	Minor1		Ν	/linor2			
Conflicting Flow All	1078	0	0	711	0	0	1543	2085	356	1727	2088	539	
Stage 1	-	-	-	-	-	-	717	717	-	1365	1365	-	
Stage 2	-	-	-	-	-	-	826	1368	-	362	723	-	
Critical Hdwy	4.22	-	-	4.22	-	-	7.62	6.62	7.02	7.62	6.62	7.02	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.62	5.62	-	6.62	5.62	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.62	5.62	-	6.62	5.62	-	
Follow-up Hdwy	2.26	-	-	2.26	-	-	3.56	4.06	3.36	3.56	4.06	3.36	
Pot Cap-1 Maneuver	620	-	-	858	-	-	75	50	629	55	50	477	
Stage 1	-	-	-	-	-	-	378	422	-	150	206	-	
Stage 2	-	-	-	-	-	-	324	206	-	618	419	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	620	-	-	858	-	-	64	41	629	43	41	477	
Mov Cap-2 Maneuver	-	-	-	-	-	-	64	41	-	43	41	-	
Stage 1	-	-	-	-	-	-	374	418	-	149	171	-	
Stage 2	-	-	-	-	-	-	266	171	-	553	415	-	
Approach	EB			WB			NB			SB			

				-	
HCM Control Delay, s	0.1	1.2	17.7	85.4	
HCM LOS			С	F	

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1
Capacity (veh/h)	349	620	-	-	858	-	-	62
HCM Lane V/C Ratio	0.19	0.01	-	-	0.169	-	-	0.291
HCM Control Delay (s)	17.7	10.9	-	-	10	-	-	85.4
HCM Lane LOS	С	В	-	-	В	-	-	F
HCM 95th %tile Q(veh)	0.7	0	-	-	0.6	-	-	1

Appendix B: HCS Output Files KY 90 Corridor Study

	HCS Two	-Lane	Highway Re	port	
Project Information					
Analyst	Grace Fwelo		Date		4/15/2022
Agency	HDR		Analysis Year		2022
Jurisdiction			Time Analyzed		2022
Project Description	KY-90 Existing_Al	M EB	Units		U.S. Customary
		nent 1			
Vehicle Inputs					
Segment Type	Passing Constrair	ned	Length, ft		1505
Measured FFS	Measured		Free-Flow Speed,	mi/h	65.0
Demand and Capacity			-		-
Directional Demand Flow Rate, veh/h	494		Opposing Deman	d Flow Rate, veh/h	-
Peak Hour Factor	0.87		Total Trucks, %		6.00
Segment Capacity, veh/h	1700		Demand/Capacity	r (D/C)	0.29
Intermediate Results					
Segment Vertical Class	1		Free-Flow Speed,	mi/h	65.0
Speed Slope Coefficient (m)	4.57721		Speed Power Coe	fficient (p)	0.41674
PF Slope Coefficient (m)	F Slope Coefficient (m) -1.33632				0.75139
In Passing Lane Effective Length?	No		Total Segment De	nsity, veh/mi/ln	4.3
%Improvement to Percent Followers	0.0		%Improvement to	Speed	0.0
Subsegment Data					
# Segment Type	Length, ft	Rac	dius, ft	Superelevation, %	Average Speed, mi/h
1 Tangent	1505	-		-	61.9
Vehicle Results					
Average Speed, mi/h	61.9		Percent Followers	, %	54.5
Segment Travel Time, minutes	0.28		Follower Density ((FD), followers/mi/ln	4.3
Vehicle LOS	С				
		Segn	nent 2		
Vehicle Inputs					
Segment Type	Passing Constrair	ned	Length, ft		1580
Measured FFS	Measured		Free-Flow Speed,	mi/h	65.0
Demand and Capacity			-		
Directional Demand Flow Rate, veh/h	494		Opposing Deman	d Flow Rate, veh/h	-
Peak Hour Factor	0.87	Total Trucks, %		6.00	
Segment Capacity, veh/h	1700		Demand/Capacity	' (D/C)	0.29
	•		•		•

Intermediate Results

Segn	nent Vertical Class	1		Free-Flow Speed,	mi/h	65.0
Spee	d Slope Coefficient (m)	4.57856		Speed Power Coef	fficient (p)	0.41674
PF SI	ope Coefficient (m)	-1.33265		PF Power Coefficie	ent (p)	0.75272
In Pa	ssing Lane Effective Length?	No		Total Segment De	nsity, veh/mi/ln	4.3
%lm	provement to Percent Followers	0.0		%Improvement to	Speed	0.0
Sub	segment Data					
#	Segment Type	Length, ft	Rad	lius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	1580	-		-	61.9
Veh	icle Results					
Avera	age Speed, mi/h	61.9		Percent Followers,	%	54.3
Segn	nent Travel Time, minutes	0.29		Follower Density (FD), followers/mi/ln	4.3
Vehic	le LOS	С				
		S	egn	nent 3		
Veh	icle Inputs					
Segn	nent Type	Passing Constrained		Length, ft		547
Meas	sured FFS	Measured		Free-Flow Speed,	mi/h	65.0
Der	nand and Capacity	-				
Direc	tional Demand Flow Rate, veh/h	547		Opposing Demand	d Flow Rate, veh/h	-
Peak	Hour Factor	0.85		Total Trucks, %		6.00
Segn	nent Capacity, veh/h	1700		Demand/Capacity	(D/C)	0.32
Inte	ermediate Results					
Segn	nent Vertical Class	1		Free-Flow Speed,	mi/h	65.0
Spee	d Slope Coefficient (m)	4.57372		Speed Power Coef	fficient (p)	0.41674
PF SI	ope Coefficient (m)	-1.34699		PF Power Coefficie	ent (p)	0.74766
In Pa	ssing Lane Effective Length?	No		Total Segment De	nsity, veh/mi/ln	5.1
%lm	provement to Percent Followers	0.0		%Improvement to	Speed	0.0
Sub	segment Data					
#	Segment Type	Length, ft	Rad	lius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	547	-		-	61.7
Veh	icle Results					
Avera	age Speed, mi/h	61.7		Percent Followers,	%	57.6
Segn	nent Travel Time, minutes	0.10		Follower Density (FD), followers/mi/ln	5.1
Vehic	le LOS	С				
		S	egn	nent 4		
Veh	icle Inputs					
Segn	nent Type	Passing Zone		Length, ft		793
Measured FFS Measured				Free-Flow Speed,	mi/h	65.0

Der	nand and Capacity							
Dire	tional Demand Flow Rate, veh/h	582		Opposing Demand	d Flow Rate, veh/h	341		
Peak	Hour Factor	0.85		Total Trucks, %		6.00		
Segr	nent Capacity, veh/h	1700		Demand/Capacity	(D/C)	0.34		
Inte	ermediate Results					÷		
Segr	nent Vertical Class	1		Free-Flow Speed,	mi/h	65.0		
Spee	d Slope Coefficient (m)	4.36372		Speed Power Coef	fficient (p)	0.50710		
PF SI	ope Coefficient (m)	-1.30043		PF Power Coefficie	ent (p)	0.78664		
In Pa	ssing Lane Effective Length?	No		Total Segment De	nsity, veh/mi/ln	5.4		
%lm	provement to Percent Followers	0.0		%Improvement to	Speed	0.0		
Sub	osegment Data							
#	Segment Type	Length, ft	Rac	lius, ft	Superelevation, %	Average Speed, mi/h		
1	Tangent	793	-		-	62.0		
Veł	iicle Results							
Aver	age Speed, mi/h	62.0		Percent Followers,	%	57.3		
Segr	nent Travel Time, minutes	0.15		Follower Density (FD), followers/mi/ln		5.4		
Vehicle LOS C		C						
		S	egn	nent 5				
Veł	icle Inputs							
Segr	nent Type	Passing Constrained		Length, ft		990		
Mea	sured FFS	Measured		Free-Flow Speed,	mi/h	65.0		
Der	nand and Capacity							
Dire	tional Demand Flow Rate, veh/h	582		Opposing Demand	d Flow Rate, veh/h	-		
Peak	Hour Factor	0.85		Total Trucks, %		6.00		
Segr	nent Capacity, veh/h	1700		Demand/Capacity	(D/C)	0.34		
Inte	ermediate Results					·		
Segr	nent Vertical Class	1		Free-Flow Speed,	mi/h	65.0		
Spee	d Slope Coefficient (m)	4.57372		Speed Power Coefficient (p)		0.41674		
PF SI	ope Coefficient (m)	-1.34699		PF Power Coefficie	ent (p)	0.74766		
In Pa	ssing Lane Effective Length?	No		Total Segment De	nsity, veh/mi/ln	5.6		
%lm	provement to Percent Followers	0.0	%Improvement to	Speed	0.0			
Sub	osegment Data							
# Segment Type Length, ft Radius, ft Superelevation, % Average Spe					Average Speed, mi/h			
1	Tangent	990	-		-	61.6		
Veł	icle Results							
Aver	age Speed, mi/h	61.6		Percent Followers,	%	59.3		
Segment Travel Time, minutes 0.18		Follower Density (FD), followers/mi/ln		5.6				

Vehi	icle LOS	С				
			Segr	nent 6		
Vel	hicle Inputs					
Segi	ment Type	Passing Constra	ained	Length, ft		1533
Mea	sured FFS	Measured		Free-Flow Speed,	mi/h	65.0
De	mand and Capacity					
Dire	ctional Demand Flow Rate, veh/h	582		Opposing Deman	d Flow Rate, veh/h	-
Peal	k Hour Factor	0.85		Total Trucks, %		6.00
Segi	ment Capacity, veh/h	1700		Demand/Capacity	[,] (D/C)	0.34
Int	ermediate Results					
Seg	ment Vertical Class	1		Free-Flow Speed,	mi/h	65.0
Spe	ed Slope Coefficient (m)	4.57772		Speed Power Coe	fficient (p)	0.41674
PF S	lope Coefficient (m)	-1.33506		PF Power Coefficie	ent (p)	0.75187
In Pa	assing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		5.6
%lm	provement to Percent Followers	0.0	0.0		Speed	0.0
Sul	bsegment Data					
#	Segment Type	Length, ft	Rad	dius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	1533	-	-		61.6
Vel	hicle Results					
Ave	rage Speed, mi/h	61.6		Percent Followers	, %	58.9
Seg	ment Travel Time, minutes	0.28	0.28		FD), followers/mi/ln	5.6
Vehi	icle LOS	С				
			Segr	nent 7		
Vel	hicle Inputs					
Seg	ment Type	Passing Constra	ained	Length, ft		4355
Mea	sured FFS	Measured		Free-Flow Speed,	mi/h	62.4
De	mand and Capacity	·		·		·
Dire	ctional Demand Flow Rate, veh/h	587		Opposing Deman	d Flow Rate, veh/h	-
Peal	 Hour Factor 	0.86		Total Trucks, %		6.00
Segment Capacity, veh/h 1700		Demand/Capacity	[,] (D/C)	0.35		
Int	ermediate Results	•				·
Segi	ment Vertical Class	1		Free-Flow Speed,	mi/h	62.4
Spe	ed Slope Coefficient (m)	4.61572		Speed Power Coe	fficient (p)	0.41674
PF S	lope Coefficient (m)	-1.28444		PF Power Coefficie	ent (p)	0.76762
In Pa	assing Lane Effective Length?	No		Total Segment De	nsity, veh/mi/ln	5.7
%lm	provement to Percent Followers	0.0		%Improvement to	Speed	0.0

Su	bsegment Data					
#	Segment Type	Length, ft	Ra	adius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	4355	-		-	59.0
Ve	hicle Results					
Ave	rage Speed, mi/h	59.0		Percent Follow	ers, %	57.4
Seg	ment Travel Time, minutes	0.84		Follower Densi	ty (FD), followers/mi/ln	5.7
Veh	icle LOS	С				
			Seg	ment 8		
Ve	hicle Inputs					
Seg	ment Type	Passing Constrai	ned	Length, ft		1219
Mea	asured FFS	Measured		Free-Flow Spee	ed, mi/h	62.4
De	mand and Capacity			÷		
Dire	ectional Demand Flow Rate, veh/h	627		Opposing Dem	and Flow Rate, veh/h	-
Pea	k Hour Factor	0.83		Total Trucks, %		6.00
Seg	ment Capacity, veh/h	1700		Demand/Capa	city (D/C)	0.37
Int	ermediate Results					
Segment Vertical Class 1			Free-Flow Spee	ed, mi/h	62.4	
Speed Slope Coefficient (m) 4.57372		4.57372	Speed Power C		oefficient (p)	0.41674
PF S	Slope Coefficient (m)	-1.37303		PF Power Coeff	icient (p)	0.74218
In P	assing Lane Effective Length?	No		Total Segment	Density, veh/mi/ln	6.6
%In	nprovement to Percent Followers	0.0		%Improvemen	t to Speed	0.0
Su	bsegment Data					
#	Segment Type	Length, ft	Ra	adius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	1219	-		-	58.9
Ve	hicle Results					
Ave	rage Speed, mi/h	58.9		Percent Follow	ers, %	62.1
Seg	ment Travel Time, minutes	0.24		Follower Densi	ty (FD), followers/mi/ln	6.6
Veh	icle LOS	С				
			Seg	ment 9		
Ve	hicle Inputs					
Segment Type Passing Constrained			Length, ft	Length, ft 752		
Mea	asured FFS	Measured		Free-Flow Spee	ed, mi/h	62.4
De	mand and Capacity					
Dire	ectional Demand Flow Rate, veh/h	679		Opposing Dem	and Flow Rate, veh/h	-
Pea	k Hour Factor	0.81		Total Trucks, %		6.00
Seg	ment Capacity, veh/h	1700		Demand/Capa	city (D/C)	0.40

Inte	ermediate Results						
Segr	ment Vertical Class	1		Free-F	low Speed,	mi/h	62.4
Spee	ed Slope Coefficient (m)	4.57372		Speed	Speed Power Coefficient (p)		0.41674
PF S	lope Coefficient (m)	-1.37303		PF Pov	wer Coefficie	ent (p)	0.74218
In Pa	assing Lane Effective Length?	No		Total S	Segment De	nsity, veh/mi/ln	7.4
%lm	provement to Percent Followers	0.0		%Impi	rovement to	Speed	0.0
Sub	osegment Data						
#	Segment Type	Length, ft	ength, ft Radius, ft		s, ft Superelevation, %		Average Speed, mi/h
1	Tangent	752	-			-	58.8
Veł	nicle Results						
Aver	rage Speed, mi/h	58.8		Percer	nt Followers,	%	64.3
Segr	ment Travel Time, minutes	0.15		Follow	ver Density (FD), followers/mi/ln	7.4
Vehi	cle LOS	С					
		·	Segm	nent 1	10		·
Veł	nicle Inputs						
Segr	nent Type	Passing Constrain	Passing Constrained		Length, ft		852
Measured FFS		Measured		Free-F	low Speed,	mi/h	62.4
Dei	mand and Capacity	•					·
Dire	ctional Demand Flow Rate, veh/h	732		Oppos	sing Deman	d Flow Rate, veh/h	-
Peak	Hour Factor	0.82		Total 1	Frucks, %		6.00
Segr	ment Capacity, veh/h	1700		Demand/Capacity (D/C)			0.43
Inte	ermediate Results						
Segr	ment Vertical Class	1		Free-F	Flow Speed, mi/h 62.4		
Spee	ed Slope Coefficient (m)	4.57372		Speed	Speed Power Coefficient (p)		0.41674
PF S	lope Coefficient (m)	-1.37303		PF Pov	PF Power Coefficient (p)		0.74218
In Pa	assing Lane Effective Length?	No		Total S	Total Segment Density, veh/mi/ln		8.3
%lm	provement to Percent Followers	0.0		%Impi	rovement to	Speed	0.0
Sul	osegment Data						
#	Segment Type	Length, ft	Rac	dius, ft		Superelevation, %	Average Speed, mi/h
1	Tangent	852	-			-	58.7
Veł	nicle Results	•					·
Average Speed, mi/h 58.7		Percer	Percent Followers, %		66.3		
Segr	ment Travel Time, minutes	0.17		Follow	/er Density (FD), followers/mi/ln	8.3
Vehi	cle LOS	D					
Fac	ility Results						
٦	T VMT veh-mi/p	VH veh-	ID ·h/p		Follower De	ensity, followers/ mi/ln	LOS

1	331	0.29	5.7	С

		HCS Two-La	ne	Highway Re	port				
D	·								
Pro	Project Information								
Anal	yst	Grace Fwelo		Date		4/15/2022			
Ager	псу	HDR		Analysis Year		2022			
Juris	diction			Time Analyzed		2022			
Proje	ect Description	KY-90_Existing_ AM W	В	Units		U.S. Customary			
		Se	egn	nent 1					
Veh	icle Inputs								
Segn	nent Type	Passing Constrained		Length, ft		852			
Mea	sured FFS	Measured		Free-Flow Speed,	mi/h	62.4			
Der	nand and Capacity					-			
Directional Demand Flow Rate, veh/h 427		427	Opposing Deman		d Flow Rate, veh/h	-			
Peak	Hour Factor	0.82		Total Trucks, %		6.00			
Segn	nent Capacity, veh/h	1700		Demand/Capacity (D/C)		0.25			
Inte	ermediate Results								
Segn	nent Vertical Class	1		Free-Flow Speed,	mi/h	62.4			
Spee	d Slope Coefficient (m)	4.57372		Speed Power Coefficient (p)		0.41674			
PF SI	ope Coefficient (m)	-1.37303		PF Power Coefficient (p)		0.74218			
In Pa	ssing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		3.7			
%lm	provement to Percent Followers	0.0		%Improvement to Speed		0.0			
Sub	segment Data								
#	Segment Type	Length, ft	Rad	lius, ft	Superelevation, %	Average Speed, mi/h			
1	Tangent	852	-		-	59.6			
Veh	icle Results								
Aver	Average Speed, mi/h 59.6 Percent Followers, % 51.8								
Segn	nent Travel Time, minutes	0.16		Follower Density (FD), followers/mi/ln		3.7			
Vehicle LOS B		В							

Segment 2

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	752			
Measured FFS	Measured FFS Measured Free-Flow Speed, mi/h		62.4			
Demand and Capacity						
Directional Demand Flow Rate, veh/h	407	Opposing Demand Flow Rate, veh/h	-			
Peak Hour Factor	0.81	Total Trucks, %	6.00			
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.24			
Intermediate Results						

Segment Vertical Class 1 F		Free-Flow Speed, mi/h		62.4			
Spee	peed Slope Coefficient (m) 4.57372 5		Speed Power Coet	fficient (p)	0.41674		
PF SI	ope Coefficient (m)	-1.37303	-1.37303		ent (p)	0.74218	
In Pa	ssing Lane Effective Length?	No		Total Segment De	nsity, veh/mi/ln	3.5	
%lm	provement to Percent Followers	0.0		%Improvement to	Speed	0.0	
Sub	osegment Data						
#	Segment Type	Length, ft	Rad	dius, ft	Superelevation, %	Average Speed, mi/h	
1	Tangent	752	-		-	59.6	
Ver	icle Results						
Aver	age Speed, mi/h	59.6		Percent Followers,	%	50.6	
Segr	nent Travel Time, minutes	0.14		Follower Density (FD), followers/mi/ln	3.5	
Vehi	cle LOS	В					
Bic	ycle Results						
Perce	ent Occupied Parking	0		Pavement Condition	on Rating	3	
Flow	Rate Outside Lane, veh/h	407		Bicycle Effective W	/idth, ft	23	
Bicyc	le LOS Score	4.47		Bicycle Effective Speed Factor		4.79	
Bicycle LOS D							
	Segment 3						
Veł	icle Inputs						
Segr	nent Type	Passing Constrain	ned	Length, ft		1219	
Mea	sured FFS	Measured		Free-Flow Speed,	mi/h	62.4	
Der	nand and Capacity						
Dire	tional Demand Flow Rate, veh/h	373		Opposing Deman	d Flow Rate, veh/h	-	
Peak	Hour Factor	0.83	0.83			6.00	
Segr	nent Capacity, veh/h	1700		Demand/Capacity (D/C)		0.22	
Inte	ermediate Results						
Segr	nent Vertical Class	1		Free-Flow Speed,	mi/h	62.4	
Spee	d Slope Coefficient (m)	4.57372		Speed Power Coet	fficient (p)	0.41674	
PF SI	ope Coefficient (m)	-1.37333		PF Power Coefficie	ent (p)	0.74211	
In Pa	ssing Lane Effective Length?	No		Total Segment De	nsity, veh/mi/ln	3.0	
%Improvement to Percent Followers 0.0		%Improvement to	%Improvement to Speed 0.0				
Sub	osegment Data						
#	Segment Type	Length, ft	Rad	dius, ft	Superelevation, %	Average Speed, mi/h	
1	Tangent	1219	-		-	59.7	
Veł	icle Results						
Aver	age Speed, mi/h	59.7		Percent Followers,	%	48.4	
Segment Travel Time, minutes 0.23		Follower Density (FD), followers/mi/ln		3.0			

Vehicle LOS	В				
Bicycle Results					
Percent Occupied Parking	0		Pavement Conditi	on Rating	3
Flow Rate Outside Lane, veh/h	373		Bicycle Effective Width, ft		23
Bicycle LOS Score	4.42	4.42 E		peed Factor	4.79
Bicycle LOS	D	D			
		Segn	nent 4		
Vehicle Inputs					
Segment Type	Passing Constrain	ned	Length, ft		4355
Measured FFS	Measured		Free-Flow Speed,	mi/h	62.4
Demand and Capacity					
Directional Demand Flow Rate, veh/h	355		Opposing Deman	d Flow Rate, veh/h	-
Peak Hour Factor	0.86		Total Trucks, %		6.00
Segment Capacity, veh/h	1700		Demand/Capacity	r (D/C)	0.21
Intermediate Results					
Segment Vertical Class	1		Free-Flow Speed,	mi/h	62.4
Speed Slope Coefficient (m) 4.61572			Speed Power Coe	fficient (p)	0.41674
PF Slope Coefficient (m) -1.28471		PF Power Coeffici	ent (p)	0.76754	
In Passing Lane Effective Length? No		Total Segment De	nsity, veh/mi/ln	2.6	
%Improvement to Percent Followers	0.0		%Improvement to	Speed	0.0
Subsegment Data					
# Segment Type	Length, ft	Rac	dius, ft	Superelevation, %	Average Speed, mi/h
1 Tangent	4355	-		-	59.8
Vehicle Results				-	
Average Speed, mi/h	59.8		Percent Followers	, %	44.0
Segment Travel Time, minutes	0.83		Follower Density	(FD), followers/mi/ln	2.6
Vehicle LOS	В				
Bicycle Results					
Percent Occupied Parking	0		Pavement Conditi	on Rating	3
Flow Rate Outside Lane, veh/h 355		Bicycle Effective V	Vidth, ft	23	
Bicycle LOS Score 4.40		Bicycle Effective S	peed Factor	4.79	
Bicycle LOS	D				
		Segn	nent 5		
Vehicle Inputs					
Segment Type	Passing Constrain	ned	Length, ft		1533
Measured FFS	Measured		Free-Flow Speed, mi/h		65.0

Demand and Capacity				
Directional Demand Flow Rate, veh/h	Opposing Dema	and Flow Rate, veh/h	-	
Peak Hour Factor	0.85	Total Trucks, %		6.00
Segment Capacity, veh/h	1700	Demand/Capac	ty (D/C)	0.20
Intermediate Results				
Segment Vertical Class	1	Free-Flow Spee	d, mi/h	65.0
Speed Slope Coefficient (m)	4.57772	Speed Power Co	pefficient (p)	0.41674
PF Slope Coefficient (m)	-1.33506	PF Power Coeffi	cient (p)	0.75187
In Passing Lane Effective Length?	No	Total Segment I	Density, veh/mi/ln	2.4
%Improvement to Percent Followers	0.0	%Improvement	to Speed	0.0
Subsegment Data				
# Segment Type	Length, ft	Radius, ft	Superelevation, %	Average Speed, mi/h
1 Tangent	1533	-	-	62.5
Vehicle Results				
Average Speed, mi/h	62.5	Percent Followe	rs, %	44.8
Segment Travel Time, minutes	0.28	Follower Densit	/ (FD), followers/mi/ln	2.4
Vehicle LOS	В			
Bicycle Results				
Percent Occupied Parking	0	Pavement Cond	ition Rating	3
Flow Rate Outside Lane, veh/h	341	Bicycle Effective	Width, ft	23
Bicycle LOS Score	4.38	Bicycle Effective	Speed Factor	4.79
Bicycle LOS	D			
	Se	egment 6		
Vehicle Inputs				
Segment Type	Passing Zone	Length, ft		990
Measured FFS	Measured	Free-Flow Spee	d, mi/h	65.0
Demand and Capacity				
Directional Demand Flow Rate, veh/h	341	Opposing Dema	and Flow Rate, veh/h	582
Peak Hour Factor	0.85	Total Trucks, %		6.00
Segment Capacity, veh/h 1700		Demand/Capac	ty (D/C)	0.20
Intermediate Results				
Segment Vertical Class	1	Free-Flow Spee	d, mi/h	65.0
Speed Slope Coefficient (m)	pefficient (m) 4.42240		pefficient (p)	0.47189
PF Slope Coefficient (m)	-1.32740	PF Power Coeffi	cient (p)	0.77591
In Passing Lane Effective Length?	No	Total Segment I	Density, veh/mi/ln	2.4
%Improvement to Percent Followers	0.0	%Improvement	to Speed	0.0
Subsegment Data				

#	Segment Type	Length, ft	Rac	dius, ft	Superelevation, %	Average Speed, mi/h			
1	Tangent	990	-		-	62.7			
Veh	Vehicle Results								
Aver	age Speed, mi/h	62.7		Percent Followers,	%	43.8			
Segn	nent Travel Time, minutes	0.18		Follower Density (FD), followers/mi/ln	2.4			
Vehio	cle LOS	В							
Bic	cle Results								
Perce	ent Occupied Parking	0		Pavement Condition	on Rating	3			
Flow	Rate Outside Lane, veh/h	341		Bicycle Effective W	/idth, ft	23			
Bicyc	le LOS Score	4.38		Bicycle Effective S	peed Factor	4.79			
Bicyc	le LOS	D							
		S	egn	nent 7					
Veh	icle Inputs								
Segn	nent Type	Passing Zone		Length, ft		793			
Meas	sured FFS	Measured		Free-Flow Speed,	mi/h	65.0			
Der	nand and Capacity	-							
Directional Demand Flow Rate, veh/h		341		Opposing Demand	d Flow Rate, veh/h	582			
Peak	Hour Factor	0.85		Total Trucks, %		6.00			
Segment Capacity, veh/h 1700		Demand/Capacity	(D/C)	0.20					
Inte	ermediate Results								
Segn	nent Vertical Class	1		Free-Flow Speed,	mi/h	65.0			
Spee	d Slope Coefficient (m)	4.42240		Speed Power Coefficient (p)		0.47189			
PF SI	ope Coefficient (m)	-1.32740		PF Power Coefficient (p)		0.77591			
In Pa	ssing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		2.4			
%lm	provement to Percent Followers	0.0		%Improvement to Speed		0.0			
Sub	osegment Data								
#	Segment Type	Length, ft	Rac	dius, ft	Superelevation, %	Average Speed, mi/h			
1	Tangent	793	-		-	62.7			
Veh	icle Results				<u>^</u>				
Aver	age Speed, mi/h	62.7		Percent Followers,	%	43.8			
Segment Travel Time, minutes 0.14		0.14		Follower Density (FD), followers/mi/ln	2.4			
Vehicle LOS B									
Bicycle Results			•						
Perce	ent Occupied Parking	0		Pavement Condition	on Rating	3			
Flow	Rate Outside Lane, veh/h	341		Bicycle Effective W	/idth, ft	23			
Bicyc	le LOS Score	4.38		Bicycle Effective S	peed Factor	4.79			
Bicyc	cle LOS D								

	Se	egn	nent 8		
Vehicle Inputs					
Segment Type	Passing Constrained		Length, ft		547
Measured FFS	Measured		Free-Flow Speed,	mi/h	65.0
Demand and Capacity					-
Directional Demand Flow Rate, veh/h	318		Opposing Deman	d Flow Rate, veh/h	-
Peak Hour Factor	0.85		Total Trucks, %		6.00
Segment Capacity, veh/h	1700		Demand/Capacity	(D/C)	0.19
Intermediate Results					
Segment Vertical Class	1		Free-Flow Speed,	mi/h	65.0
Speed Slope Coefficient (m)	4.57372		Speed Power Coet	fficient (p)	0.41674
PF Slope Coefficient (m)	-1.34699		PF Power Coefficie	ent (p)	0.74766
In Passing Lane Effective Length?	No		Total Segment De	nsity, veh/mi/ln	2.2
%Improvement to Percent Followers	0.0		%Improvement to	Speed	0.0
Subsegment Data					
# Segment Type	Length, ft	Rac	dius, ft	Superelevation, %	Average Speed, mi/h
1 Tangent	547	-		-	62.6
Vehicle Results				1	
Average Speed, mi/h	62.6		Percent Followers,	%	43.5
Segment Travel Time, minutes	0.10		Follower Density (FD), followers/mi/ln	2.2
Vehicle LOS	В				
Bicycle Results	·		·		·
Percent Occupied Parking	0	_	Pavement Conditi	on Rating	3
Flow Rate Outside Lane, veh/h	318		Bicycle Effective Width, ft		23
Bicycle LOS Score	4.34		Bicycle Effective S	peed Factor	4.79
Bicycle LOS	D				
	Se	egn	nent 9		·
Vehicle Inputs					
Segment Type	Passing Constrained		Length, ft		1580
Measured FFS Measured		Free-Flow Speed,	mi/h	65.0	
Demand and Capacity	1		<u> </u>		
Directional Demand Flow Rate, veh/h	305		Opposing Deman	d Flow Rate, veh/h	-
Peak Hour Factor	0.87		Total Trucks. %		6.00
Segment Capacity, veh/h	1700		Demand/Capacity	(D/C)	0.18
Intermediate Results	I				
Segment Vertical Class	1		Free-Flow Speed	mi/h	65.0

Spee	d Slope Coefficient (m)	4.57856		Speed Power Coefficient (p)		0.41674			
PF Slope Coefficient (m)		-1.33265		PF Power Coefficient (p)		0.75272			
In Passing Lane Effective Length?		No		Total Segment Density, veh/mi/ln		2.0			
%lmp	provement to Percent Followers	0.0		%Improvement to	Speed	0.0			
Sub	Subsegment Data								
#	Segment Type	Length, ft	Rad	lius, ft	Superelevation, %	Average Speed, mi/h			
1	Tangent	1580	-		-	62.6			
Veh	Vehicle Results								
Avera	ige Speed, mi/h	62.6		Percent Followers,	%	42.0			
Segm	ent Travel Time, minutes	0.29		Follower Density (FD), followers/mi/ln	2.0			
Vehic	le LOS	В							
Bicy	cle Results								
Perce	nt Occupied Parking	0		Pavement Condition	on Rating	3			
Flow	Rate Outside Lane, veh/h	305		Bicycle Effective W	/idth, ft	23			
Bicyc	e LOS Score	4.32		Bicycle Effective Sp	peed Factor	4.79			
Bicyc	e LOS	D							
		Se	gm	ent 10					
Veh	icle Inputs								
Segm	ent Type	Passing Lanes		Length, ft		1505			
Meas	Measured FFS Measured		Free-Flow Speed,	mi/h	65.0				
Den	nand and Capacity								
Direc	tional Demand Flow Rate, veh/h	305		Opposing Demand	d Flow Rate, veh/h	-			
Peak Hour Factor 0.87		Total Trucks, %		6.00					
Segm	ent Capacity, veh/h	1700		Demand/Capacity	(D/C)	0.18			
Inte	rmediate Results								
Segm	ent Vertical Class	1		Free-Flow Speed,	mi/h	65.0			
Spee	d Slope Coefficient (m)	4.59503		Speed Power Coefficient (p)		0.41674			
PF Slo	ope Coefficient (m)	-1.29272		PF Power Coefficient (p)		0.76617			
In Pas	ssing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		2.0			
%lmp	provement to Percent Followers	0.0		%Improvement to	Speed	0.0			
Sub	segment Data			• •					
#	Segment Type	Length, ft	Rad	lius, ft	Superelevation, %	Average Speed, mi/h			
1	Tangent	1505	-		-	62.6			
Veh	icle Results								
Avera	ige Speed, mi/h	62.6		Percent Followers,	%	40.5			
Segm	ent Travel Time, minutes	0.27		Follower Density (FD), followers/mi/ln	2.0			
Follov mi/ln	wer Density Mid-Point, followers/	0.0		Vehicle LOS		A			

Bicycle Results						
Percent C	Occupied Parking	0	Pavement Condition Rating	3		
Flow Rate	e Outside Lane, veh/h	152	Bicycle Effective Width, ft	23		
Bicycle LC	DS Score	3.97	Bicycle Effective Speed Factor	4.79		
Bicycle LC	DS	D				
Facility Results						
т	VMT veh-mi/p	VHD veh-h/p	Follower Density, followers/ mi/ln	LOS		
1	198	0.13	2.6	В		

KY-90 HCS 2022 Existing_WB V2.xuf

HCS Multilane Highway Report

Project Information

Analyst	Grace Fwelo	Date	4/15/2022
Agency	HDR	Analysis Year	2022
Jurisdiction		Time Analyzed	2022
Project Description	KY-90 Existing_ AM Multilane Seg 1	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	Eastbound					
Number of Lanes (N), In	2	Terrain Type	Level			
Segment Length (L), ft	5280	Percent Grade, %	-			
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-			
Base Free-Flow Speed (BFFS), mi/h	-	Access Point Density, pts/mi	-			
Lane Width, ft	-	Left-Side Lateral Clearance (LCR), ft	-			
Median Type	-	Total Lateral Clearance (TLC), ft	-			
Free-Flow Speed (FFS), mi/h	65.0					
Direction 1 Adjustment Factors						
Driver Population	Balanced Mix	Final Speed Adjustment Factor (SAF)	0.950			
Driver Population SAF	0.950	Final Capacity Adjustment Factor (CAF)	0.939			
Driver Population CAF	0.939					
Direction 1 Demand and Cap	acity					
Volume (V) veh/h	430	Heavy Vehicle Adjustment Factor (fHV)	0.943			
Peak Hour Factor	0.87	Flow Rate (Vp), pc/h/ln	262			
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2236			
Single-Unit Trucks (SUT), %	-	Adjusted Capacity (cadj), pc/h/ln	2100			
Tractor-Trailers (TT), %	-	Volume-to-Capacity Ratio (v/c)	0.12			
Direction 1 Speed and Densit	Direction 1 Speed and Density					
Lane Width Adjustment (flw)		Average Speed (S) mi/h	61.8			

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	61.8
Total Lateral Clearance Adj. (fLLC)	-	Density (D), pc/mi/ln	4.2
Median Type Adjustment (fM)	-	Level of Service (LOS)	А
Access Point Density Adjustment (fA)	-		

Direction 2 Geometric Data			
Direction 2	Westbound		
Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	5280	Percent Grade, %	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Access Point Density, pts/mi	-
Lane Width, ft	-	Left-Side Lateral Clearance (LCR), ft	-
Median Type	-	Total Lateral Clearance (TLC), ft	-
Free-Flow Speed (FFS), mi/h	65.0		
Direction 2 Adjustment Fact	ors		
Driver Population	Balanced Mix	Final Speed Adjustment Factor (SAF)	0.950
Driver Population SAF	0.950	Final Capacity Adjustment Factor (CAF)	0.939
Driver Population CAF	0.939		
Direction 2 Demand and Ca	pacity		
Volume (V) veh/h	265	Heavy Vehicle Adjustment Factor (fHV)	0.943
Peak Hour Factor	0.87	Flow Rate (Vp), pc/h/ln	162
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2236
Single-Unit Trucks (SUT), %	-	Adjusted Capacity (cadj), pc/h/ln	2100
Tractor-Trailers (TT), %	-	Volume-to-Capacity Ratio (v/c)	0.08
Direction 2 Speed and Densi	ity		
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	61.8
Total Lateral Clearance Adj. (fLLC)	-	Density (D), pc/mi/ln	2.6
Median Type Adjustment (fM)	-	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	-		
Direction 2 Bicycle LOS			
Flow Rate in Outside Lane (vOL), veh/h	247	Effective Speed Factor (St)	4.79
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	-
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	F

KY-90 HCS 2022 Existing_ AM Multilane Seg1 V3.xuf

HCS Multilane Highway Report

Project Information

Analyst	Grace Fwelo	Date	4/15/2022
Agency	HDR	Analysis Year	2022
Jurisdiction		Time Analyzed	2022
Project Description	KY-90 Exisitng_ AM Multilane Seg 12	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	Eastbound				
Number of Lanes (N), In	2	Terrain Type	Level		
Segment Length (L), ft	5280	Percent Grade, %	-		
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-		
Base Free-Flow Speed (BFFS), mi/h	-	Access Point Density, pts/mi	-		
Lane Width, ft	-	Left-Side Lateral Clearance (LCR), ft	-		
Median Type	-	Total Lateral Clearance (TLC), ft	-		
Free-Flow Speed (FFS), mi/h	62.4				
Direction 1 Adjustment Factors					
Driver Population	Balanced Mix	Final Speed Adjustment Factor (SAF)	0.950		
Driver Population SAF	0.950	Final Capacity Adjustment Factor (CAF)	0.939		
Driver Population CAF	0.939				
Direction 1 Demand and Cap	acity				
Volume (V) veh/h	600	Heavy Vehicle Adjustment Factor (fHV)	0.943		
Peak Hour Factor	0.82	Flow Rate (Vp), pc/h/ln	388		
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2186		
Single-Unit Trucks (SUT), %	-	Adjusted Capacity (cadj), pc/h/ln	2053		
Tractor-Trailers (TT), %	-	Volume-to-Capacity Ratio (v/c)	0.19		
Direction 1 Speed and Densit	у				
Lane Width Adjustment (flw)	_	Average Speed (S) mi/h	593		

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	59.3
Total Lateral Clearance Adj. (fLLC)	-	Density (D), pc/mi/ln	6.5
Median Type Adjustment (fM)	-	Level of Service (LOS)	А
Access Point Density Adjustment (fA)	-		

Direction 2 Geometric Data			
Direction 2	Westbound		
Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	5280	Percent Grade, %	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Access Point Density, pts/mi	-
Lane Width, ft	-	Left-Side Lateral Clearance (LCR), ft	-
Median Type	-	Total Lateral Clearance (TLC), ft	-
Free-Flow Speed (FFS), mi/h	62.4		
Direction 2 Adjustment Fact	ors		
Driver Population	Balanced Mix	Final Speed Adjustment Factor (SAF)	0.950
Driver Population SAF	0.950	Final Capacity Adjustment Factor (CAF)	0.939
Driver Population CAF	0.939		
Direction 2 Demand and Ca	pacity		
Volume (V) veh/h	350	Heavy Vehicle Adjustment Factor (fHV)	0.943
Peak Hour Factor	0.82	Flow Rate (Vp), pc/h/ln	226
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2186
Single-Unit Trucks (SUT), %	-	Adjusted Capacity (cadj), pc/h/ln	2053
Tractor-Trailers (TT), %	-	Volume-to-Capacity Ratio (v/c)	0.11
Direction 2 Speed and Dens	ity		
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	59.3
Total Lateral Clearance Adj. (fLLC)	-	Density (D), pc/mi/ln	3.8
Median Type Adjustment (fM)	-	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	-		
Direction 2 Bicycle LOS			
Flow Rate in Outside Lane (vOL), veh/h	366	Effective Speed Factor (St)	4.79
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	-
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	F

KY-90 HCS 2022 Existing_Multilane Seg12 V2.xuf

HCS Multilane Highway Report

Project Information

Analyst	Grace Fwelo	Date	4/15/2022
Agency	HDR	Analysis Year	2022
Jurisdiction		Time Analyzed	2022
Project Description	KY-90 Exisitng_ AM Multilane Seg 13	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	n 1 Eastbound					
Number of Lanes (N), In	2	Terrain Type	Level			
Segment Length (L), ft	5280	Percent Grade, %	-			
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-			
Base Free-Flow Speed (BFFS), mi/h	-	Access Point Density, pts/mi	-			
Lane Width, ft	-	Left-Side Lateral Clearance (LCR), ft	-			
Median Type	-	Total Lateral Clearance (TLC), ft	-			
Free-Flow Speed (FFS), mi/h	61.6					
Direction 1 Adjustment Factors						
Driver Population	Balanced Mix	Final Speed Adjustment Factor (SAF)	0.950			
Driver Population SAF	0.950	Final Capacity Adjustment Factor (CAF)	0.939			
Driver Population CAF	0.939					
Direction 1 Demand and Cap	acity					
Volume (V) veh/h	680	Heavy Vehicle Adjustment Factor (fHV)	0.943			
Peak Hour Factor	0.83	Flow Rate (Vp), pc/h/ln	434			
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2170			
Single-Unit Trucks (SUT), %	-	Adjusted Capacity (cadj), pc/h/ln	2038			
Tractor-Trailers (TT), %	-	Volume-to-Capacity Ratio (v/c)	0.21			
Direction 1 Speed and Densit	Direction 1 Speed and Density					
Laws Misthe Adiustics and (first)		Average Crannel (C) and the				

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	58.5
Total Lateral Clearance Adj. (fLLC)	-	Density (D), pc/mi/ln	7.4
Median Type Adjustment (fM)	-	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	-		

Direction 2 Geometric Data			
Direction 2	Westbound		
Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	5280	Percent Grade, %	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Access Point Density, pts/mi	-
Lane Width, ft	-	Left-Side Lateral Clearance (LCR), ft	-
Median Type	-	Total Lateral Clearance (TLC), ft	-
Free-Flow Speed (FFS), mi/h	61.6		
Direction 2 Adjustment Factor	ors		
Driver Population	Balanced Mix	Final Speed Adjustment Factor (SAF)	0.950
Driver Population SAF	0.950	Final Capacity Adjustment Factor (CAF)	0.939
Driver Population CAF	0.939		
Direction 2 Demand and Cap	pacity		
Volume (V) veh/h	385	Heavy Vehicle Adjustment Factor (fHV)	0.943
Peak Hour Factor	0.83	Flow Rate (Vp), pc/h/ln	246
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2170
Single-Unit Trucks (SUT), %	-	Adjusted Capacity (cadj), pc/h/ln	2038
Tractor-Trailers (TT), %	-	Volume-to-Capacity Ratio (v/c)	0.12
Direction 2 Speed and Densi	ty		
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	58.5
Total Lateral Clearance Adj. (fLLC)	-	Density (D), pc/mi/ln	4.2
Median Type Adjustment (fM)	-	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	-		
Direction 2 Bicycle LOS	÷	·	÷
Flow Rate in Outside Lane (vOL), veh/h	410	Effective Speed Factor (St)	4.79
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	-
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	F
Copyright © 2022 University of Florida. All Rights	Reserved. HCSTM Multila	ane Version 2022	Generated: 05/10/2022 15:30:06

ights Reserved. HCS TWW MURITIAITE VERSION 2022 KY-90 HCS 2022 Existing_ AM Multilane Seg13 V3.xuf

		HCS Two-La	ne	Highway Re	port	
Project	Information		_			
Analyst		Grace Fwelo		Date		4/15/2022
Agency		HDR		Analysis Year		2022
Jurisdictio	n			Time Analyzed		2022
Project De	escription	KY-90 Existing_PM EB		Units		U.S. Customary
		Se	egn	nent 1		
Vehicle	Inputs					
Segment 1	Гуре	Passing Constrained		Length, ft		1505
Measured	FFS	Measured	Measured		mi/h	65.0
Deman	d and Capacity			·		÷
Directiona	I Demand Flow Rate, veh/h	344		Opposing Deman	d Flow Rate, veh/h	-
Peak Hour	Factor	0.93		Total Trucks, %		6.00
Segment Capacity, veh/h 1700		1700		Demand/Capacity	(D/C)	0.20
Interm	ediate Results					
Segment \	Vertical Class	1		Free-Flow Speed,	mi/h	65.0
Speed Slope Coefficient (m)		4.57721		Speed Power Coefficient (p)		0.41674
PF Slope Coefficient (m) -1.33632		PF Power Coefficie	ent (p)	0.75139		
In Passing Lane Effective Length? No		Total Segment De	nsity, veh/mi/ln	2.5		
%Improve	%Improvement to Percent Followers 0.0			%Improvement to	Speed	0.0
Subseg	ment Data					
# Segi	ment Type	Length, ft	Rac	lius, ft	Superelevation, %	Average Speed, mi/h
1 Tang	gent	1505	-		-	62.5
Vehicle	Results				•	
Average S	peed, mi/h	62.5		Percent Followers	%	45.1
Segment 1	Travel Time, minutes	0.27		Follower Density (FD), followers/mi/ln	2.5
Vehicle LO)S	В				
		Se	egn	nent 2		÷
Vehicle	Inputs					
Segment 1	Туре	Passing Constrained		Length, ft		1580
Measured	FFS	Measured		Free-Flow Speed,	mi/h	65.0
Deman	d and Capacity					
Directiona	I Demand Flow Rate, veh/h	344		Opposing Deman	d Flow Rate, veh/h	-
Peak Hour	r Factor	0.93		Total Trucks, %		6.00
Segment (Capacity, veh/h	1700		Demand/Capacity	(D/C)	0.20
Interm	ediate Results					

Segment Vertical Class 1 Fr		Free-Flow Speed, mi/h		65.0			
Spee	d Slope Coefficient (m)	4.57856		Speed Power Coef	fficient (p)	0.41674	
PF SI	ope Coefficient (m)	-1.33265		PF Power Coefficie	ent (p)	0.75272	
In Pa	ssing Lane Effective Length?	No		Total Segment De	nsity, veh/mi/ln	2.5	
%lm	provement to Percent Followers	0.0		%Improvement to	Speed	0.0	
Sub	osegment Data						
#	Segment Type	Length, ft	Rad	lius, ft	Superelevation, %	Average Speed, mi/h	
1	Tangent	1580	1580 -		-	62.5	
Veh	icle Results						
Avera	age Speed, mi/h	62.5		Percent Followers, %		45.0	
Segn	nent Travel Time, minutes	0.29		Follower Density (FD), followers/mi/ln	2.5	
Vehic	cle LOS	В					
		S	egn	nent 3			
Veh	icle Inputs						
Segment Type		Passing Constrained		Length, ft		547	
Measured FFS		Measured		Free-Flow Speed, mi/h		65.0	
Der	nand and Capacity						
Directional Demand Flow Rate, veh/h		372		Opposing Demand Flow Rate, veh/h		-	
Peak Hour Factor 0.91		Total Trucks, %		6.00			
Segn	nent Capacity, veh/h	1700		Demand/Capacity (D/C)		0.22	
Inte	ermediate Results						
Segment Vertical Class 1		1		Free-Flow Speed,	mi/h	65.0	
Speed Slope Coefficient (m)		4.57372		Speed Power Coef	fficient (p)	0.41674	
PF SI	ope Coefficient (m)	-1.34699		PF Power Coefficie	ent (p)	0.74766	
In Pa	ssing Lane Effective Length?	No		Total Segment De	nsity, veh/mi/ln	2.8	
%lm	provement to Percent Followers	0.0		%Improvement to Speed 0.0		0.0	
Sub	segment Data						
# Segment Type		Length, ft	Rad	lius, ft	Superelevation, %	Average Speed, mi/h	
1	Tangent 547 -			-	62.3		
Veh	icle Results						
Average Speed, mi/h 62.3			Percent Followers, %		47.4		
Segment Travel Time, minutes		0.10		Follower Density (FD), followers/mi/ln		2.8	
Vehio	cle LOS	В	В				
	Segment 4						
Veh	icle Inputs						
Segn	nent Type	Passing Zone		Length, ft		793	
Meas	sured FFS	Measured	Measured		mi/h	65.0	

Der	nand and Capacity							
Dire	tional Demand Flow Rate, veh/h	397		Opposing Deman	d Flow Rate, veh/h	598		
Peak	Hour Factor	0.92		Total Trucks, %		6.00		
Segr	nent Capacity, veh/h	1700		Demand/Capacity	(D/C)	0.23		
Inte	ermediate Results							
Segr	nent Vertical Class	1		Free-Flow Speed,	mi/h	65.0		
Spee	d Slope Coefficient (m)	4.42570		Speed Power Coet	fficient (p)	0.47013		
PF SI	ope Coefficient (m)	-1.32860		PF Power Coefficie	ent (p)	0.77531		
In Pa	ssing Lane Effective Length?	No		Total Segment De	nsity, veh/mi/ln	3.0		
%lm	provement to Percent Followers	0.0		%Improvement to	Speed	0.0		
Sub	osegment Data							
# Segment Type		Length, ft	Rad	lius, ft	Superelevation, %	Average Speed, mi/h		
1	Tangent	793	-		-	62.5		
Veł	icle Results				-			
Average Speed, mi/h 62.5 Percent Followe					%	47.7		
Segment Travel Time, minutes		0.14		Follower Density (FD), followers/mi/ln		3.0		
Vehicle LOS		В	В					
		S	egn	nent 5				
Ver	icle Inputs							
Segment Type Passing Constrained Length, ft 990					990			
Mea	Measured FFS Measured			Free-Flow Speed,	mi/h	65.0		
Der	nand and Capacity							
Directional Demand Flow Rate, veh/h 397				Opposing Deman	d Flow Rate, veh/h	-		
Peak Hour Factor 0.92		Total Trucks, %		6.00				
Segr	nent Capacity, veh/h	1700		Demand/Capacity (D/C)		0.23		
Inte	ermediate Results							
Segr	nent Vertical Class	1		Free-Flow Speed, mi/h		65.0		
Spee	d Slope Coefficient (m)	4.57372		Speed Power Coefficient (p)		0.41674		
PF Slope Coefficient (m) -1.34699		PF Power Coefficient (p)		0.74766				
In Passing Lane Effective Length? No		Total Segment Density, veh/mi/ln		3.1				
%Improvement to Percent Followers 0.0			%Improvement to Speed		0.0			
Sub	osegment Data							
#	# Segment Type Length, ft Rad		dius, ft Superelevation, %		Average Speed, mi/h			
1	Tangent	990	990 -		-	62.2		
Ver	icle Results							
Aver	age Speed, mi/h	62.2		Percent Followers,	%	49.1		
Segment Travel Time, minutes 0.18		Follower Density (FD), followers/mi/ln		3.1				

Vehi	cle LOS	В				
			Segr	nent 6		
Veł	nicle Inputs					
Segr	nent Type	Passing Constr	ained	Length, ft		1533
Mea	sured FFS	Measured		Free-Flow Speed,	mi/h	65.0
Dei	mand and Capacity					
Dire	ctional Demand Flow Rate, veh/h	397		Opposing Deman	d Flow Rate, veh/h	-
Peak	Hour Factor	0.92		Total Trucks, %		6.00
Segr	nent Capacity, veh/h	1700		Demand/Capacity	r (D/C)	0.23
Inte	ermediate Results					
Segr	nent Vertical Class	1		Free-Flow Speed,	mi/h	65.0
Spee	ed Slope Coefficient (m)	4.57772		Speed Power Coe	fficient (p)	0.41674
PF S	lope Coefficient (m)	-1.33506		PF Power Coefficie	ent (p)	0.75187
In Pa	assing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		3.1
%Improvement to Percent Followers		0.0	0.0		Speed	0.0
Sub	osegment Data					
#	Segment Type	Length, ft	Rad	lius, ft Superelevation, %		Average Speed, mi/h
1	Tangent	1533	-		-	62.2
Veł	nicle Results					
Aver	age Speed, mi/h	62.2		Percent Followers	, %	48.6
Segment Travel Time, minutes 0.28		Follower Density ((FD), followers/mi/ln	3.1		
Vehi	cle LOS	В				
			Segr	nent 7		
Veł	nicle Inputs					
Segr	nent Type	Passing Constr	ained	Length, ft		4355
Mea	sured FFS	Measured		Free-Flow Speed, mi/h		62.4
Dei	mand and Capacity					·
Dire	ctional Demand Flow Rate, veh/h	426		Opposing Demand Flow Rate, veh/h		-
Peak	Hour Factor	0.95		Total Trucks, %		6.00
Segr	nent Capacity, veh/h	city, veh/h 1700		Demand/Capacity (D/C)		0.25
Inte	ermediate Results					
Segr	ment Vertical Class	rtical Class 1		Free-Flow Speed, mi/h		62.4
Spee	ed Slope Coefficient (m)	4.61572		Speed Power Coe	fficient (p)	0.41674
PF S	lope Coefficient (m)	-1.28444		PF Power Coefficie	ent (p)	0.76762
In Pa	assing Lane Effective Length?	No		Total Segment De	nsity, veh/mi/ln	3.5
%lm	provement to Percent Followers	o Percent Followers 0.0		%Improvement to	Speed	0.0

Su	bsegment Data					
#	Segment Type	Length, ft	Ra	adius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	4355	-		-	59.5
Ve	hicle Results				·	
Ave	rage Speed, mi/h	59.5		Percent Followe	ers, %	48.7
Seg	ment Travel Time, minutes	0.83		Follower Densit	ty (FD), followers/mi/ln	3.5
Veh	icle LOS	В				
		·	Seg	ment 8		·
Ve	hicle Inputs					
Seg	ment Type	Passing Constrai	ned	Length, ft		1219
Measured FFS Measured				Free-Flow Spee	ed, mi/h	62.4
De	mand and Capacity	·		÷		
Directional Demand Flow Rate, veh/h 441			Opposing Dem	and Flow Rate, veh/h	-	
Peak Hour Factor		0.93		Total Trucks, %		6.00
Segment Capacity, veh/h 1		1700		Demand/Capad	city (D/C)	0.26
Int	ermediate Results					
Segment Vertical Class 1		1		Free-Flow Spee	ed, mi/h	62.4
Speed Slope Coefficient (m) 4.57372		4.57372	Speed Power Co		oefficient (p)	0.41674
PF S	PF Slope Coefficient (m) -1.37303		PF Power Coeff	icient (p)	0.74218	
In P	n Passing Lane Effective Length? No		Total Segment	Density, veh/mi/ln	3.9	
%In	%Improvement to Percent Followers 0.0			%Improvement	to Speed	0.0
Su	bsegment Data					
#	Segment Type	Length, ft	Ra	adius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	1219	-	-		59.5
Ve	hicle Results					
Ave	rage Speed, mi/h	59.5		Percent Followe	ers, %	52.7
Seg	ment Travel Time, minutes	0.23		Follower Density (FD), followers/mi/ln		3.9
Vehicle LOS E		В				
			Seg	ment 9		
Ve	hicle Inputs					
Segment Type Passing Constrained		Length, ft		752		
Mea	Measured FFS Measured			Free-Flow Spee	ed, mi/h	62.4
De	mand and Capacity					
Dire	ectional Demand Flow Rate, veh/h	478		Opposing Dem	and Flow Rate, veh/h	-
Pea	k Hour Factor	0.91		Total Trucks, %		6.00
Seg	ment Capacity, veh/h	1700		Demand/Capad	city (D/C)	0.28

Inte	ermediate Results						
Segr	ment Vertical Class	1		Free-	Flow Speed,	mi/h	62.4
Spee	ed Slope Coefficient (m)	4.57372		Speed	d Power Coef	fficient (p)	0.41674
PF S	lope Coefficient (m)	-1.37303		PF Po	wer Coefficie	ent (p)	0.74218
In Pa	assing Lane Effective Length?	No		Total	Segment De	nsity, veh/mi/ln	4.4
%lm	provement to Percent Followers	0.0		%lmp	provement to	Speed	0.0
Sub	osegment Data						
#	Segment Type	Length, ft	Rad	dius, ft		Superelevation, %	Average Speed, mi/h
1	Tangent	752	-			-	59.4
Veł	nicle Results	·				•	·
Aver	age Speed, mi/h	59.4		Perce	nt Followers,	%	54.8
Segr	ment Travel Time, minutes	0.14		Follo	wer Density (FD), followers/mi/ln	4.4
Vehi	cle LOS	С					
			Segn	nent	10		
Veł	nicle Inputs						
Segment Type		Passing Constrain	Passing Constrained		Length, ft		852
Measured FFS		Measured	Measured		Free-Flow Speed, mi/h		62.4
Dei	mand and Capacity						·
Directional Demand Flow Rate, veh/h 489		Оррс	sing Deman	d Flow Rate, veh/h	-		
Peak	Hour Factor	0.93		Total	Trucks, %		6.00
Segr	nent Capacity, veh/h	1700		Dema	Demand/Capacity (D/C)		0.29
Inte	ermediate Results						
Segr	ment Vertical Class	1		Free-	Flow Speed,	mi/h	62.4
Speed Slope Coefficient (m)		4.57372		Speed	Speed Power Coefficient (p)		0.41674
PF S	lope Coefficient (m)	-1.37303	-1.37303		PF Power Coefficient (p)		0.74218
In Pa	assing Lane Effective Length?	No		Total	Total Segment Density, veh/mi/ln		4.6
%lm	provement to Percent Followers	0.0		%Imp	%Improvement to Speed		0.0
Sub	osegment Data						
#	Segment Type	Length, ft	Rad	dius, ft		Superelevation, %	Average Speed, mi/h
1	Tangent	852	-			-	59.3
Veł	nicle Results					8	
Aver	age Speed, mi/h	59.3		Perce	nt Followers,	. %	55.4
Segr	ment Travel Time, minutes	0.16		Follo	Follower Density (FD), followers/mi/ln		4.6
Vehi	cle LOS	С					
Fac	ility Results						
Т	VMT veh-mi/p	VH veh-	D h/p		Follower De	ensity, followers/ mi/ln	LOS

	1	254	0.18	3.3	В
--	---	-----	------	-----	---

		HCS Two-Lar	ne ⊢	lighway Re	port			
Pro	ject Information							
Anal	yst	Grace Fwelo		Date		4/15/2022		
Ager	су	HDR		Analysis Year		2022		
Juris	diction		·	Time Analyzed		2022		
Proje	ect Description	KY-90_Existing_ PM WE	B	Units		U.S. Customary		
	Segment 1							
Vehicle Inputs								
Segr	nent Type	Passing Constrained		Length, ft		852		
Mea	sured FFS	Measured		Free-Flow Speed, r	ni/h	62.4		
Der	nand and Capacity							
Dire	tional Demand Flow Rate, veh/h	742		Opposing Demand	d Flow Rate, veh/h	-		
Peak	Hour Factor	0.93	·	Total Trucks, %		6.00		
Segr	nent Capacity, veh/h	1700		Demand/Capacity	(D/C)	0.44		
Inte	ermediate Results							
Segr	nent Vertical Class	1		Free-Flow Speed, mi/h		62.4		
Spee	d Slope Coefficient (m)	4.57372	:	Speed Power Coefficient (p)		0.41674		
PF SI	ope Coefficient (m)	-1.37303		PF Power Coefficie	nt (p)	0.74218		
In Pa	ssing Lane Effective Length?	No	·	Total Segment Der	nsity, veh/mi/ln	8.4		
%Improvement to Percent Followers 0.0			%Improvement to Speed 0.0		0.0			
Sub	osegment Data							
#	Segment Type	Length, ft	Radiu	ıs, ft	Superelevation, %	Average Speed, mi/h		

Vehicle Resu	lts
--------------	-----

Tangent

1

Average Speed, mi/h	58.6	Percent Followers, %	66.7
Segment Travel Time, minutes	0.17	Follower Density (FD), followers/mi/ln	8.4
Vehicle LOS	D		

_

_

58.6

852

Segment 2

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	752		
Measured FFS	Measured	Free-Flow Speed, mi/h	62.4		
Demand and Capacity					
Directional Demand Flow Rate, veh/h	720	Opposing Demand Flow Rate, veh/h	-		
Peak Hour Factor	0.91	Total Trucks, %	6.00		
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.42		
Intermediate Results					

Segment Vertical Class		1		Free-Flow Speed, mi/h		62.4
Speed Slope Coefficient (m) 4.57372 5		Speed Power Coef	fficient (p)	0.41674		
PF Slope Coefficient (m) -1.37303 F		PF Power Coefficie	ent (p)	0.74218		
In Pa	ssing Lane Effective Length?	No		Total Segment Der	nsity, veh/mi/ln	8.1
%lm	provement to Percent Followers	0.0		%Improvement to	Speed	0.0
Sub	osegment Data					
#	Segment Type	Length, ft	Rac	lius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	752	-		-	58.7
Veł	icle Results					
Aver	age Speed, mi/h	58.7		Percent Followers,	%	65.9
Segr	nent Travel Time, minutes	0.15		Follower Density (FD), followers/mi/ln	8.1
Vehi	cle LOS	D				
Bic	ycle Results					
Perce	ent Occupied Parking	0		Pavement Condition	on Rating	3
Flow	Rate Outside Lane, veh/h	720		Bicycle Effective W	/idth, ft	23
Bicyc	le LOS Score	4.76		Bicycle Effective Speed Factor		4.79
Bicyc	le LOS	E				
		S	Segn	nent 3		
Veł	iicle Inputs					
Segr	nent Type	Passing Constrained		Length, ft		1219
Mea	sured FFS	Measured		Free-Flow Speed,	mi/h	62.4
Der	mand and Capacity					
Dire	ctional Demand Flow Rate, veh/h	667		Opposing Demand	d Flow Rate, veh/h	-
Peak	Hour Factor	0.93		Total Trucks, %		6.00
Segr	nent Capacity, veh/h	1700		Demand/Capacity (D/C)		0.39
Inte	ermediate Results					
Segr	nent Vertical Class	1		Free-Flow Speed, mi/h		62.4
Spee	d Slope Coefficient (m)	4.57372		Speed Power Coefficient (p)		0.41674
PF SI	ope Coefficient (m)	-1.37333		PF Power Coefficient (p)		0.74211
In Pa	ssing Lane Effective Length?	No		Total Segment Der	nsity, veh/mi/ln	7.2
%Improvement to Percent Followers 0.0		%Improvement to Speed		0.0		
Sub	osegment Data					
#	Segment Type	Length, ft	Rac	lius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	1219	-		-	58.8
Veł	icle Results					
Aver	age Speed, mi/h	58.8		Percent Followers,	%	63.8
Segment Travel Time, minutes 0.24 Fe		Follower Density (FD), followers/mi/ln 7.2		7.2		

Vehicle LOS	С				
Bicycle Results					
Percent Occupied Parking	0		Pavement Conditi	on Rating	3
Flow Rate Outside Lane, veh/h	667		Bicycle Effective V	Vidth, ft	23
Bicycle LOS Score	4.72		Bicycle Effective S	peed Factor	4.79
Bicycle LOS	E				
		Segn	nent 4		
Vehicle Inputs					
Segment Type	Passing Constrain	ned	Length, ft		4355
Measured FFS	Measured		Free-Flow Speed,	mi/h	62.4
Demand and Capacity					
Directional Demand Flow Rate, veh/h	611		Opposing Deman	d Flow Rate, veh/h	-
Peak Hour Factor	0.95		Total Trucks, %		6.00
Segment Capacity, veh/h	1700		Demand/Capacity	r (D/C)	0.36
Intermediate Results					
Segment Vertical Class	1		Free-Flow Speed,	mi/h	62.4
Speed Slope Coefficient (m)	4.61572	4.61572		fficient (p)	0.41674
PF Slope Coefficient (m) -1.28471			PF Power Coeffici	ent (p)	0.76754
In Passing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		6.1
%Improvement to Percent Followers	0.0		%Improvement to	Speed	0.0
Subsegment Data					
# Segment Type	Length, ft	Rad	dius, ft	Superelevation, %	Average Speed, mi/h
1 Tangent	4355	-		-	58.9
Vehicle Results		<u>.</u>			
Average Speed, mi/h	58.9		Percent Followers, %		58.5
Segment Travel Time, minutes	0.84		Follower Density (FD), followers/mi/ln		6.1
Vehicle LOS	С				
Bicycle Results					
Percent Occupied Parking	0		Pavement Condition Rating		3
Flow Rate Outside Lane, veh/h 611		Bicycle Effective V	Vidth, ft	23	
Bicycle LOS Score 4.67		Bicycle Effective Speed Factor		4.79	
Bicycle LOS	Bicycle LOS E				
		Segn	nent 5		
Vehicle Inputs					
Segment Type	Passing Constrai	ned	Length, ft		1533
Measured FFS	Measured		Free-Flow Speed,	mi/h	65.0

Demand and Capacity					
Directional Demand Flow Rate, veh/h	598	0	Opposing Demand	d Flow Rate, veh/h	-
Peak Hour Factor	0.92	Тс	otal Trucks, %		6.00
Segment Capacity, veh/h	1700	D	Demand/Capacity	(D/C)	0.35
Intermediate Results	·				•
Segment Vertical Class	1	Fi	ree-Flow Speed, I	mi/h	65.0
Speed Slope Coefficient (m)	4.57772	S	Speed Power Coef	ficient (p)	0.41674
PF Slope Coefficient (m)	-1.33506	Р	PF Power Coefficie	ent (p)	0.75187
In Passing Lane Effective Length?	No	То	otal Segment Dei	nsity, veh/mi/ln	5.8
%Improvement to Percent Followers	0.0	%	%Improvement to	Speed	0.0
Subsegment Data	·				·
# Segment Type	Length, ft	Radius	s, ft	Superelevation, %	Average Speed, mi/h
1 Tangent	1533	-		-	61.6
Vehicle Results					·
Average Speed, mi/h	61.6	P	Percent Followers,	%	59.6
Segment Travel Time, minutes	0.28	F	Follower Density (FD), followers/mi/ln		5.8
Vehicle LOS	С				
Bicycle Results					
Percent Occupied Parking	0	Pa	Pavement Condition	on Rating	3
Flow Rate Outside Lane, veh/h	598	В	Bicycle Effective Width, ft		23
Bicycle LOS Score	4.66	В	Bicycle Effective Speed Factor		4.79
Bicycle LOS	E				
	Se	egme	ent 6		
Vehicle Inputs					
Segment Type	Passing Zone	Le	Length, ft		990
Measured FFS	Measured	Fi	ree-Flow Speed,	mi/h	65.0
Demand and Capacity					
Directional Demand Flow Rate, veh/h	598	0	Opposing Demand Flow Rate, veh/h		397
Peak Hour Factor	0.92	То	otal Trucks, %		6.00
Segment Capacity, veh/h 1700		D	Demand/Capacity	(D/C)	0.35
Intermediate Results					
Segment Vertical Class	1	Fi	ree-Flow Speed,	mi/h	65.0
Speed Slope Coefficient (m)	4.37872		Speed Power Coef	ficient (p)	0.49736
PF Slope Coefficient (m)	-1.30829	Р	PF Power Coefficie	ent (p)	0.78388
In Passing Lane Effective Length?	No	То	otal Segment De	nsity, veh/mi/ln	5.6
%Improvement to Percent Followers	0.0	%	%Improvement to	Speed	0.0
Subsegment Data					

#	Segment Type	Length, ft	Radi	ius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	990 -			-	61.9
Veh	icle Results					
Avera	age Speed, mi/h	61.9		Percent Followers,	%	58.3
Segn	ient Travel Time, minutes	0.18		Follower Density (FD), followers/mi/ln	5.6
Vehic	le LOS	С				
Bicy	/cle Results					
Perce	ent Occupied Parking	0		Pavement Condition	on Rating	3
Flow	Rate Outside Lane, veh/h	598		Bicycle Effective W	/idth, ft	23
Bicyc	le LOS Score	4.66		Bicycle Effective Sp	peed Factor	4.79
Bicyc	le LOS	E				
		Se	egm	nent 7		
Veh	icle Inputs					
Segn	nent Type	Passing Zone		Length, ft		793
Meas	sured FFS	Measured		Free-Flow Speed,	mi/h	65.0
Der	nand and Capacity					
Direc	tional Demand Flow Rate, veh/h	598	598		d Flow Rate, veh/h	397
Peak	Hour Factor	0.92		Total Trucks, %		6.00
Segn	ient Capacity, veh/h	1700		Demand/Capacity	(D/C)	0.35
Inte	rmediate Results					
Segn	nent Vertical Class	1		Free-Flow Speed,	mi/h	65.0
Spee	d Slope Coefficient (m)	4.37872		Speed Power Coefficient (p)		0.49736
PF SI	ope Coefficient (m)	-1.30829		PF Power Coefficient (p)		0.78388
In Pa	ssing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		5.6
%lmp	provement to Percent Followers	0.0		%Improvement to Speed		0.0
Sub	segment Data					
#	Segment Type	Length, ft	Radi	ius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	793	-		-	61.9
Veh	icle Results					
Avera	age Speed, mi/h	61.9		Percent Followers,	%	58.3
Segn	ient Travel Time, minutes	0.15		Follower Density (FD), followers/mi/ln	5.6
Vehicle LOS C		С				
Bicy	/cle Results					
Perce	ent Occupied Parking	0		Pavement Condition Rating		3
Flow	Rate Outside Lane, veh/h	598		Bicycle Effective W	/idth, ft	23
Bicyc	le LOS Score	4.66		Bicycle Effective Sp	peed Factor	4.79
Bicycle LOS E						

	Se	egn	nent 8		
Vehicle Inputs					
Segment Type	Passing Constrained		Length, ft		547
Measured FFS	Measured		Free-Flow Speed,	mi/h	65.0
Demand and Capacity					-1
Directional Demand Flow Rate, veh/h	582		Opposing Deman	d Flow Rate, veh/h	-
Peak Hour Factor	0.91		Total Trucks, %		6.00
Segment Capacity, veh/h	1700		Demand/Capacity	(D/C)	0.34
Intermediate Results					
Segment Vertical Class	1	_	Free-Flow Speed,	mi/h	65.0
Speed Slope Coefficient (m)	4.57372		Speed Power Coet	fficient (p)	0.41674
PF Slope Coefficient (m)	-1.34699		PF Power Coefficie	ent (p)	0.74766
In Passing Lane Effective Length?	No		Total Segment De	nsity, veh/mi/ln	5.6
%Improvement to Percent Followers	0.0		%Improvement to	Speed	0.0
Subsegment Data					
# Segment Type	Length, ft	Rac	dius, ft	Superelevation, %	Average Speed, mi/h
1 Tangent	547	-		-	61.6
Vehicle Results					
Average Speed, mi/h	61.6		Percent Followers,	. %	59.3
Segment Travel Time, minutes	0.10	10 Follower Den		FD), followers/mi/ln	5.6
Vehicle LOS	С				
Bicycle Results	·		·		·
Percent Occupied Parking	0	Pavement Condition Rating		3	
Flow Rate Outside Lane, veh/h	582		Bicycle Effective W	/idth, ft	23
Bicycle LOS Score	4.65		Bicycle Effective Speed Factor		4.79
Bicycle LOS	E				
	Se	egn	nent 9		·
Vehicle Inputs					
Segment Type	Passing Constrained		Length, ft		1580
Measured FES Measured			Free-Flow Speed,	mi/h	65.0
Demand and Capacity	1		<u> </u>		
Directional Demand Flow Rate, veh/h	543		Opposing Deman	d Flow Rate, veh/h	-
Peak Hour Factor	0.93		Total Trucks. %		6.00
Segment Capacity, veh/h	1700		Demand/Capacity	(D/C)	0.32
Intermediate Results	I				
Segment Vertical Class	1		Free-Flow Speed	mi/h	65.0

Speed Slope Coefficient (m)		4.57856		Speed Power Coefficient (p)		0.41674
PF Slope Coefficient (m) -1.332		-1.33265	-1.33265		ent (p)	0.75272
In Pa	ssing Lane Effective Length?	No		Total Segment De	nsity, veh/mi/ln	5.0
%lmp	provement to Percent Followers	0.0		%Improvement to	Speed	0.0
Sub	segment Data					
#	Segment Type	Length, ft	Rad	lius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	1580	-			61.7
Veh	icle Results					
Avera	ige Speed, mi/h	61.7		Percent Followers,	%	56.9
Segm	ient Travel Time, minutes	0.29		Follower Density (FD), followers/mi/ln	5.0
Vehic	le LOS	C				
Bicy	cle Results					
Perce	nt Occupied Parking	0		Pavement Condition	on Rating	3
Flow	Rate Outside Lane, veh/h	543		Bicycle Effective W	/idth, ft	23
Bicyc	le LOS Score	4.61		Bicycle Effective S	peed Factor	4.79
Bicyc	le LOS	E				
		Se	gm	ent 10		
Veh	icle Inputs					
Segn	ient Type	Passing Lanes		Length, ft		1505
Meas	ured FFS	Measured		Free-Flow Speed,	mi/h	65.0
Den	nand and Capacity					
Direc	tional Demand Flow Rate, veh/h	543		Opposing Demand	d Flow Rate, veh/h	-
Peak	Hour Factor	0.93		Total Trucks, %		6.00
Segn	ient Capacity, veh/h	1700		Demand/Capacity	(D/C)	0.32
Inte	rmediate Results					
Segn	ient Vertical Class	1		Free-Flow Speed,	mi/h	65.0
Spee	d Slope Coefficient (m)	4.59503	4.59503		fficient (p)	0.41674
PF SI	ope Coefficient (m)	-1.29272		PF Power Coefficient (p)		0.76617
In Pa	ssing Lane Effective Length?	No		Total Segment Density, veh/mi/ln		4.9
%lmp	provement to Percent Followers	0.0		%Improvement to	%Improvement to Speed 0.0	
Sub	segment Data					
#	Segment Type	Length, ft	Rad	lius, ft	Superelevation, %	Average Speed, mi/h
1	Tangent	1505 -			-	61.7
Veh	icle Results				^	
Avera	ige Speed, mi/h	61.7		Percent Followers,	%	55.5
Segn	nent Travel Time, minutes	0.28		Follower Density (FD), followers/mi/ln	4.9
Follower Density Mid-Point, followers/ 0.0 V		Vehicle LOS C		С		

Bicycle Results							
Percent C	Occupied Parking	0	Pavement Condition Rating	3			
Flow Rate Outside Lane, veh/h 272		272	Bicycle Effective Width, ft	23			
Bicycle LOS Score		4.26	Bicycle Effective Speed Factor	4.79			
Bicycle LC	DS	D					
Facility	Facility Results						
т	VMT veh-mi/p	VHD veh-h/p	Follower Density, followers/ mi/ln	LOS			
1	380	0.34	6.1	C			

KY-90 HCS 2022 Existing_ PM WB V3.xuf

Generated: 05/10/2022 15:47:19

HCS Multilane Highway Report

Project Information

Analyst	Grace Fwelo	Date	4/15/2022
Agency	HDR	Analysis Year	2022
Jurisdiction		Time Analyzed	2022
Project Description	KY-90 Existing_ PM Multilane Seg 1	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	Eastbound		
Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	5280	Percent Grade, %	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Access Point Density, pts/mi	-
Lane Width, ft	-	Left-Side Lateral Clearance (LCR), ft	-
Median Type	-	Total Lateral Clearance (TLC), ft	-
Free-Flow Speed (FFS), mi/h	65.0		
Direction 1 Adjustment Factors			
Driver Population	Balanced Mix	Final Speed Adjustment Factor (SAF)	0.950
Driver Population SAF	0.950	Final Capacity Adjustment Factor (CAF)	0.939
Driver Population CAF	0.939		
Direction 1 Demand and Capa	acity		
Volume (V) veh/h	320	Heavy Vehicle Adjustment Factor (fHV)	0.943
Peak Hour Factor	0.93	Flow Rate (Vp), pc/h/ln	182
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2236
Single-Unit Trucks (SUT), %	-	Adjusted Capacity (cadj), pc/h/ln	2100
Tractor-Trailers (TT), %	-	Volume-to-Capacity Ratio (v/c)	0.09
Direction 1 Speed and Density			
Less Added A de serve et (Corre			610

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	61.8
Total Lateral Clearance Adj. (fLLC)	-	Density (D), pc/mi/ln	2.9
Median Type Adjustment (fM)	-	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	-		

Direction 2 Geometric Data			
Direction 2	Westbound		
Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	5280	Percent Grade, %	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Access Point Density, pts/mi	-
Lane Width, ft	-	Left-Side Lateral Clearance (LCR), ft	-
Median Type	-	Total Lateral Clearance (TLC), ft	-
Free-Flow Speed (FFS), mi/h	65.0		
Direction 2 Adjustment Factor	ors		
Driver Population	Balanced Mix	Final Speed Adjustment Factor (SAF)	0.950
Driver Population SAF	0.950	Final Capacity Adjustment Factor (CAF)	0.939
Driver Population CAF	0.939		
Direction 2 Demand and Cap	pacity		
Volume (V) veh/h	505	Heavy Vehicle Adjustment Factor (fHV)	0.943
Peak Hour Factor	0.93	Flow Rate (Vp), pc/h/ln	288
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2236
Single-Unit Trucks (SUT), %	-	Adjusted Capacity (cadj), pc/h/ln	2100
Tractor-Trailers (TT), %	-	Volume-to-Capacity Ratio (v/c)	0.14
Direction 2 Speed and Densi	ty		
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	61.8
Total Lateral Clearance Adj. (fLLC)	-	Density (D), pc/mi/ln	4.7
Median Type Adjustment (fM)	-	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	-		
Direction 2 Bicycle LOS	·		·
Flow Rate in Outside Lane (vOL), veh/h	172	Effective Speed Factor (St)	4.79
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	-
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	F
Copyright © 2022 University of Florida. All Rights	Reserved. HCSTM Multila	ane Version 2022	Generated: 05/10/2022 15:04:43

kights Reserved. HCS TWU MULTITURE VERSION 2022 KY-90 HCS 2022 Existing_ PM Multilane Seg1 V3.xuf

HCS Multilane Highway Report

Project Information

Analyst	Grace Fwelo	Date	4/15/2022
Agency	HDR	Analysis Year	2022
Jurisdiction		Time Analyzed	2022
Project Description	KY-90 Exisitng_ PM Multilane Seg 12	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	Eastbound			
Number of Lanes (N), In	2	Terrain Type	Level	
Segment Length (L), ft	5280	Percent Grade, %	-	
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-	
Base Free-Flow Speed (BFFS), mi/h	-	Access Point Density, pts/mi	-	
Lane Width, ft	-	Left-Side Lateral Clearance (LCR), ft	-	
Median Type	-	Total Lateral Clearance (TLC), ft	-	
Free-Flow Speed (FFS), mi/h	62.4			
Direction 1 Adjustment Factors				
Driver Population	Balanced Mix	Final Speed Adjustment Factor (SAF)	0.950	
Driver Population SAF	0.950	Final Capacity Adjustment Factor (CAF)	0.939	
Driver Population CAF	0.939			
Direction 1 Demand and Cap	acity			
Volume (V) veh/h	455	Heavy Vehicle Adjustment Factor (fHV)	0.943	
Peak Hour Factor	0.93	Flow Rate (Vp), pc/h/ln	260	
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2186	
Single-Unit Trucks (SUT), %	-	Adjusted Capacity (cadj), pc/h/ln	2053	
Tractor-Trailers (TT), %	-	Volume-to-Capacity Ratio (v/c)	0.13	
Direction 1 Speed and Density				
Lane Width Adjustment (flW)	_	Average Speed (S) mi/h	593	

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	59.3
Total Lateral Clearance Adj. (fLLC)	-	Density (D), pc/mi/ln	4.4
Median Type Adjustment (fM)	-	Level of Service (LOS)	А
Access Point Density Adjustment (fA)	-		

Direction 2 Geometric Data			
Direction 2	Westbound		
Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	5280	Percent Grade, %	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Access Point Density, pts/mi	-
Lane Width, ft	-	Left-Side Lateral Clearance (LCR), ft	-
Median Type	-	Total Lateral Clearance (TLC), ft	-
Free-Flow Speed (FFS), mi/h	62.4		
Direction 2 Adjustment Factor	ors		
Driver Population	Balanced Mix	Final Speed Adjustment Factor (SAF)	0.950
Driver Population SAF	0.950	Final Capacity Adjustment Factor (CAF)	0.939
Driver Population CAF	0.939		
Direction 2 Demand and Cap	pacity		
Volume (V) veh/h	690	Heavy Vehicle Adjustment Factor (fHV)	0.943
Peak Hour Factor	0.93	Flow Rate (Vp), pc/h/ln	394
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2186
Single-Unit Trucks (SUT), %	-	Adjusted Capacity (cadj), pc/h/ln	2053
Tractor-Trailers (TT), %	-	Volume-to-Capacity Ratio (v/c)	0.19
Direction 2 Speed and Densi	ty		
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	59.3
Total Lateral Clearance Adj. (fLLC)	-	Density (D), pc/mi/ln	6.6
Median Type Adjustment (fM)	-	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	-		
Direction 2 Bicycle LOS			
Flow Rate in Outside Lane (vOL), veh/h	245	Effective Speed Factor (St)	4.79
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	-
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	F
Copyright © 2022 University of Florida. All Rights	Reserved. HCSTM Mu	Itilane Version 2022	Generated: 05/10/2022 15:15:53

KY-90 HCS 2022 Existing_ PM Multilane Seg12 V3.xuf

HCS Multilane Highway Report

Project Information

Analyst	Grace Fwelo	Date	4/15/2022
Agency	HDR	Analysis Year	2022
Jurisdiction		Time Analyzed	2022
Project Description	KY-90 Exisitng_ PM Multilane Seg 13	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	Eastbound		
Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	5280	Percent Grade, %	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Access Point Density, pts/mi	-
Lane Width, ft	-	Left-Side Lateral Clearance (LCR), ft	-
Median Type	-	Total Lateral Clearance (TLC), ft	-
Free-Flow Speed (FFS), mi/h	61.6		
Direction 1 Adjustment Factors			
Driver Population	Balanced Mix	Final Speed Adjustment Factor (SAF)	0.950
Driver Population SAF	0.950	Final Capacity Adjustment Factor (CAF)	0.939
Driver Population CAF	0.939		
Direction 1 Demand and Cap	acity		
Volume (V) veh/h	485	Heavy Vehicle Adjustment Factor (fHV)	0.943
Peak Hour Factor	0.95	Flow Rate (Vp), pc/h/ln	270
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2170
Single-Unit Trucks (SUT), %	-	Adjusted Capacity (cadj), pc/h/ln	2038
Tractor-Trailers (TT), %	-	Volume-to-Capacity Ratio (v/c)	0.13
Direction 1 Speed and Density			

Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	58.5
Total Lateral Clearance Adj. (fLLC)	-	Density (D), pc/mi/ln	4.6
Median Type Adjustment (fM)	-	Level of Service (LOS)	А
Access Point Density Adjustment (fA)	-		

Direction 2 Geometric Data			
Direction 2	Westbound		
Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	5280	Percent Grade, %	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Access Point Density, pts/mi	-
Lane Width, ft	-	Left-Side Lateral Clearance (LCR), ft	-
Median Type	-	Total Lateral Clearance (TLC), ft	-
Free-Flow Speed (FFS), mi/h	61.6		
Direction 2 Adjustment Factor	ors		
Driver Population	Balanced Mix	Final Speed Adjustment Factor (SAF)	0.950
Driver Population SAF	0.950	Final Capacity Adjustment Factor (CAF)	0.939
Driver Population CAF	0.939		
Direction 2 Demand and Cap	pacity		
Volume (V) veh/h	775	Heavy Vehicle Adjustment Factor (fHV)	0.943
Peak Hour Factor	0.95	Flow Rate (Vp), pc/h/ln	432
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2170
Single-Unit Trucks (SUT), %	-	Adjusted Capacity (cadj), pc/h/ln	2038
Tractor-Trailers (TT), %	-	Volume-to-Capacity Ratio (v/c)	0.21
Direction 2 Speed and Densi	ty		
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	58.5
Total Lateral Clearance Adj. (fLLC)	-	Density (D), pc/mi/ln	7.4
Median Type Adjustment (fM)	-	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	-		
Direction 2 Bicycle LOS			
Flow Rate in Outside Lane (vOL), veh/h	255	Effective Speed Factor (St)	4.79
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	-
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	F
Copyright © 2022 University of Florida. All Rights	Reserved. HCSTM Multi	ane Version 2022	Generated: 05/10/2022 15:32:33

KY-90 HCS 2022 Existing_ PM Multilane Seg13 V3.xuf